Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng đáy. Biết \(\angle BAC = {30^0},\,\,SA = a\) và \(BA = BC = a\). Gọi \(D\) là điểm đối xứng với \(B\) qua \(AC\). Khoảng cách từ \(B\) đến mặt \(\left( {SCD} \right)\) bằng:
A. \(\dfrac{{\sqrt {21} }}{7}a\)
B. \(\dfrac{{\sqrt 2 }}{2}a\)
C. \(\dfrac{{2\sqrt {21} }}{7}a\)
D. \(\dfrac{{\sqrt {21} }}{{14}}a\)
Lời giải của giáo viên
Gọi \(O\) là trung điểm của \(AC \Rightarrow BO \bot AC \Rightarrow B,\,\,O,\,\,D\) thẳng hàng.
Ta có \(\Delta ABC\) cân tại \(B \Rightarrow \angle BAC = \angle BCA = {30^0} \Rightarrow \angle ABC = {120^0}\). Dễ thấy \(ABCD\) là hình thoi nên \(\angle ADC = \angle ABC = {120^0}\).
Trong \(\left( {ABCD} \right)\) kẻ \(AH \bot CD\,\,\left( {H \in CD} \right)\), trong \(\left( {SAH} \right)\) kẻ \(AK \bot SH\,\,\left( {K \in SH} \right)\).
Ta có : \(\begin{array}{l}\left\{ \begin{array}{l}CD \bot AH\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAH} \right) \Rightarrow CD \bot AK\\\left\{ \begin{array}{l}AK \bot SH\\AK \bot CD\end{array} \right. \Rightarrow AK \bot \left( {SCD} \right) \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = AK\end{array}\).
Lại có \(AB//CD \Rightarrow AB//\left( {SCD} \right) \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = d\left( {B;\left( {SCD} \right)} \right) = AK\).
Ta có : \(AH = AD.\sin \angle ADH = a.\sin 60 = \dfrac{{a\sqrt 3 }}{2}\)
Xét tam giác vuông SAH có : \(AK = \dfrac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }} = \dfrac{{a.\dfrac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \dfrac{{3{a^2}}}{4}} }} = \dfrac{{a\sqrt {21} }}{7}\).
Vậy \(d\left( {B;\left( {SCD} \right)} \right) = \dfrac{{a\sqrt {21} }}{7}\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là:
Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng:
Cho hình chóp \(S.\,ABC\) có \(SA\) vuông góc với đáy. Tam giác \(ABC\) vuông cân tại \(B\), biết \(SA = AC = 2a\). Thể tích khối chóp \(S.ABC\) là
Trong không gian \(Oxyz\) cho \(A\left( {0;1;2} \right),\,\,B\left( {0;1;0} \right),\,\,C\left( {3;1;1} \right)\) và mặt phẳng \(\left( Q \right):\,\,x + y + z - 5 = 0\). Xét điểm \(M\) thay đổi thuộc \(\left( Q \right)\). Giá trị nhỏ nhất của biểu thức \(M{A^2} + M{B^2} + M{C^2}\) bằng:
Cho khối nón có độ dài đường sinh bằng \(2a\), góc giữa đường sinh và đáy bằng \({60^0}\). Thể tích của khối nón đã cho là:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là:
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là:
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng \(\left( Q \right)\) với \(\left( Q \right)\) song song với \(\left( P \right)\) và khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng \(\dfrac{7}{3}\) là:
Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\).
Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng \(a\).
Trong không gian \(Oxyz\), mặt phẳng \(\left( {Oxy} \right)\) có phương trình là:
Trong không gian Oxyz, đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{z}{3}\) đi qua điểm nào dưới đây:
Cho \(\int\limits_0^1 {\dfrac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}}} = a + b\ln 2 + c\ln 3\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a + b + c\) bằng:
Đặt \({\log _5}3 = a\), khi đó \({\log _{81}}75\) bằng: