Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AD = 2a; \(SA\bot \left( ABCD \right)\) và SA = a. Khoảng cách từ A đến mặt phẳng (SCD) bằng
A. \(\frac{{2a\sqrt 3 }}{3}\)
B. \(\frac{{3a\sqrt 3 }}{2}\)
C. \(\frac{{2a\sqrt 5 }}{5}\)
D. \(\frac{{3a\sqrt 7 }}{7}\)
Lời giải của giáo viên
Ta có \(\left\{ \begin{array}{l} CD \bot AD\\ CD \bot SA \end{array} \right. \Rightarrow CD \bot (SAD) \Rightarrow \left( {SCD} \right) \bot \left( {SAD} \right)\) theo giao tuyến SD
Gọi H là hình chiếu vuông góc của A trên SD \(\Rightarrow AH \bot \left( {SCD} \right) \Rightarrow d\left( {A,\left( {SCD} \right)} \right) = AH\)
Xét \(\Delta SAD\) vuông tại A đường cao AH
\(\begin{array}{l} \Rightarrow AH = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a.2a}}{{\sqrt {{a^2} + 4{a^2}} }} = \frac{{2a\sqrt 5 }}{5}\\ \Rightarrow d\left( {A,\left( {SCD} \right)} \right) = \frac{{2a\sqrt 5 }}{5} \end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Với hai số x, t dương thoả xy = 36, bất đẳng thức nào sau đây đúng?
Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l} \frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}},x \ne 1\\ 3x + m,x = 1 \end{array} \right.\) liên tục tại x = 1.
Cho hàm số \(y={{x}^{4}}-2\left( 1-{{m}^{2}} \right){{x}^{2}}+m+1\). Tìm tất các giá trị của tham số m để hàm số cực đại, cực tiểu và các điểm cực trị của đồ thị lập thành một tam giác có diện tích lớn nhất
Cho hàm số y = f(x) có đồ thị như hình vẽ. Trên khoảng (-1;3) đồ thị hàm số y = f(x) có mấy điểm cực trị?
Hàm số \(y={{\left( x+1 \right)}^{\frac{1}{3}}}\) xác định khi \(x+1>0\Leftrightarrow x>-1\)
Mệnh đề sau đây đúng?
Số nghiệm của phương trình \({9^x} + {2.3^{x + 1}} - 7 = 0\) là
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\). Nếu phương trình \(f\left( x \right)=0\) có ba nghiệm phân biệt thì phương trình \(2f\left( x \right).f''\left( x \right)={{\left[ f'\left( x \right) \right]}^{2}}\) có nhiều nhất bao nhiêu nghiệm?
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right)=x+\frac{4}{x}\) trên đoạn [1;3] bằng
Trên đồ thị của hàm số \(y=\frac{2x-5}{3x-1}\) có bao nhiêu điểm có tọa độ là các số nguyên?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, chiều cao của chóp bằng \(\frac{a\sqrt{3}}{2}\). Góc giữa mặt bên và mặt đáy bằng
Tập xác định D của hàm số \(y = {\left( {x + 1} \right)^{\frac{1}{3}}}\) là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, \(BC=a\sqrt{3}\), mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Thể tích V của khối chóp S.ABC là
Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là (a;b). Hãy tính tổng S=a+b.
Đồ thị hàm số \(y = \frac{{2017x - 2018}}{{x + 1}}\) có đường tiệm cận đứng là