Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh \(a\sqrt{3}, \widehat{BAD}=60{}^\circ \), SA vuông góc với mặt phẳng đáy, SA=3a. Khoảng cách giữa hai đường thẳng SO và AD bằng
A. \(\frac{{\sqrt 5 a}}{5}\)
B. \(\frac{{3\sqrt {17} a}}{{17}}\)
C. \(\frac{{\sqrt {17} a}}{{17}}\)
D. \(\frac{{3\sqrt 5 a}}{5}\)
Lời giải của giáo viên
Gọi M là trung điểm cạnh AB.
Ta có \(OM\,\text{//}\,AD\) nên \(AD\,\text{//}\,\left( SOM \right)\). Suy ra \(d\left( SO,AD \right)=d\left( AD,\left( SOM \right) \right)=d\left( A,\left( SOM \right) \right)\,\,\left( 1 \right)\).
Vẽ \(AN\bot OM,\,N\in OM\) và \(AH\bot SN\,\,\left( 2 \right),\,H\in SN\).
Do \(SA\bot \left( ABCD \right)\Rightarrow SA\bot OM\). Mà \(OM\bot AN\) nên \(OM\bot \left( SAN \right)\Rightarrow OM\bot AH\,\,\left( 3 \right)\).
Từ \(\left( 2 \right)\) và \(\left( 3 \right)\) suy ra \(AH\bot \left( SOM \right) \Rightarrow AH=d\left( A,\left( SOM \right) \right)\,\,\left( 4 \right)\)
Do \(AN\bot OM,\,OM\,\text{//}\,AD \Rightarrow AN\bot AD\Rightarrow \widehat{NAD}=90{}^\circ \).
Lại có ABCD là hình thoi tâm O có \(\widehat{BAD}=60{}^\circ \) nên \(\widehat{MAN}=90{}^\circ -\widehat{BAD}=30{}^\circ \).
Xét tam giác MAN vuông tại N có \(AN=AM.\cos \widehat{MAN}=\frac{a\sqrt{3}}{2}.\cos 30{}^\circ =\frac{3a}{4}\).
Do tam giác SAN vuông tại A có AH là đường cao nên \(\frac{1}{A{{H}^{2}}}=\frac{1}{A{{S}^{2}}}+\frac{1}{A{{N}^{2}}}\Leftrightarrow AH=\frac{AS.AN}{\sqrt{A{{S}^{2}}+A{{N}^{2}}}}=\frac{3a.\frac{3a}{4}}{\sqrt{9{{a}^{2}}+\frac{9{{a}^{2}}}{16}}}=\frac{3\sqrt{17}a}{17}\,\,\left( 5 \right)\).
Từ \(\left( 1 \right),\left( 4 \right)\) và \(\left( 5 \right)\) suy ra \(d\left( SO,AD \right)=\frac{3\sqrt{17}a}{17}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z=5-3i. Môđun của số phức \(\left( 1-2i \right)\left( \overline{z}-1 \right)\) bằng
Trong không gian \(Oxyz\), điểm nào sau đây thuộc trục \(Oz\)?
Nếu \(\int\limits_{0}^{\frac{\pi }{3}}{\left[ \sin x-3f\left( x \right) \right]}\text{d}x=6\) thì \(\int\limits_{0}^{\frac{\pi }{3}}{f\left( x \right)}\text{d}x\) bằng
Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_{1}^{2}{f\left( x \right)}\text{d}x=1\) và \(\int\limits_{1}^{4}{f\left( t \right)}\text{d}t=-3\). Tính tích phân \(I=\int\limits_{2}^{4}{f\left( u \right)}\text{d}u\).
Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ bằng
Có bao nhiêu cách xếp 4 học sinh thành một hàng dọc?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Hàm số \(y=f\left( x \right)\) nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và AC=3. Thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC là
Diện tích xung quanh của hình trụ có bán kính đáy R, chiều cao h là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(xf\left( {{x}^{2}} \right)-f\left( 2x \right)=2{{x}^{3}}+2x,\,\,\,\forall x\in \mathbb{R}\). Tính giá trị \(I=\int\limits_{1}^{2}{f\left( x \right)\text{d}x}\).
Nghiệm của phương trình \(\ln \left( 7x \right)=7\) là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên dưới.
Tích tất cả các giá trị nguyên của tham số m để bất phương trình \({{36.12}^{f\left( x \right)}}+\left( {{m}^{2}}-5m \right){{.4}^{f\left( x \right)}}\le \left( {{f}^{2}}\left( x \right)-4 \right){{.36}^{f\left( x \right)}}\) nghiệm đúng với mọi số thực x là
Cho khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{3}\). Tính thể tích khối lăng trụ đó theo a.
Với m là tham số thực, ta có \(\int\limits_{1}^{2}{\text{(}2mx+1)\text{d}x}=4.\) Khi đó m thuộc tập hợp nào sau đây?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( x \right)\) như hình bên. Đặt \(g\left( x \right)=2f\left( x \right)+{{x}^{2}}+3\). Khẳng định nào sau đây là đúng?