Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và \(SA\bot \left( ABCD \right),\) góc giữa SA và mặt phẳng \(\left( SBD \right)\) bằng \({{30}^{{}^\circ }}\). Thể tích của khối chóp S.ABCD bằng
A. \(\frac{{{a}^{3}}\sqrt{3}}{6}\)
B. \(\frac{{{a}^{3}}\sqrt{3}}{2}\)
C. \(\frac{{{a}^{3}}\sqrt{6}}{6}\)
D. \(\frac{{{a}^{3}}\sqrt{6}}{2}\).
Lời giải của giáo viên
Gọi \(O=AC\cap BD,\) kẻ \(AH\bot SO\left( H\in SO \right).\)
Ta có \(\left. \begin{align} & BD\bot AC \\ & BD\bot SA \\ \end{align} \right\}\Rightarrow BD\bot \left( SAC \right)\Rightarrow BD\bot AH\Rightarrow AH\bot \left( SBD \right).\)
\(\Rightarrow SH\) là hình chiếu vuông góc từ SA xuống \(\left( SBD \right).\)
\(\Rightarrow \left( \widehat{SA,\left( SBD \right)} \right)=\left( \widehat{SA,SH} \right)=\widehat{ASH}=\widehat{ASO}={{30}^{\circ }}. \Rightarrow SA=\cot {{30}^{\circ }}.OA=\frac{a\sqrt{6}}{2}.\)
\(\Rightarrow {{V}_{S.ABCD}}=\frac{1}{3}SA.{{S}_{ABCD}}=\frac{1}{3}\cdot \frac{a\sqrt{6}}{2}\cdot {{a}^{2}}=\frac{{{a}^{3}}\sqrt{6}}{6}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho điểm \(A(1\,;\,-1\,;\,3)\) và hai đường thẳng \({{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2}, {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1}\). Viết phương trình đường thẳng d đi qua A,vuông góc với đường thẳng \({{d}_{1}}\) và cắt đường thẳng \({{d}_{2}}\).
Cho hàm số \(f\left( x \right)\) bảng xét dấu của \(f'\left( x \right)\) như sau:
Số điểm cực trị của hàm số đã cho là
Với a là số thực dương tùy ý, \(\sqrt[3]{{{a}^{4}}}\) bằng:
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=5\) và \({{u}_{2}}=8\). Giá trị của \({{u}_{3}}\) bằng
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\).
Cho hàm số \(f\left( x \right)=4{{x}^{3}}+{{e}^{x}}-1\). Trong các khẳng định sau, khẳng định nào đúng
Cho hàm số \(f\left( x \right)\), đồ thị của hàm số \(y=f'\left( x \right)\) là đường cong trong hình bên. Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( x+2 \right)-x\) trên đoạn \(\left[ -3\,;\,0 \right]\) bằng
Một khối chóp có thể tích là \(36{{a}^{3}}\) và diện tích mặt đáy là \(9{{a}^{2}}\). Chiều cao của khối chóp đó bằng
Cho hình hộp chữ nhật \(ABCD{A}'{B}'{C}'{D}'\) có \(AB=3a\,;\,A{A}'=4a\) (như hình vẽ). Tính khoảng cách từ điểm B đến mặt phẳng \(\left( AD{C}'{B}' \right)\).
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có \(f\left( 0 \right)=1\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình vẽ.
Hàm số \(y=\left| f\left( 3x \right)-9{{x}^{3}}-1 \right|\) đồng biến trên khoảng
Một hình nón có đường kính đáy là 6cm, độ dài đường sinh là 3cm. Diện tích xung quanh của hình nón đó bằng
Trong không gian Oxyz, cho mặt cầu có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-1=0\). Bán kính của mặt cầu là
Nghiệm của phương trình \({3^{{x^2} - 3x + 1}} = \frac{1}{3}\) là:
Có bao nhiêu số phức z thỏa mãn điều kiện \(\left| z-3i \right|=5\) và \(\frac{z}{z-4}\) là số thuần ảo?