Lời giải của giáo viên
Ta có \(BC=\sqrt{A{{C}^{2}}-A{{B}^{2}}}=\sqrt{4{{a}^{2}}-{{a}^{2}}}=\sqrt{3}a.\) Do đó \(DA=\sqrt{3}a;DC=DD'=a\)
Tứ diện DACD' vuông tại D nên ta có
\(\frac{1}{{{h}^{2}}}=\frac{1}{D{{A}^{2}}}+\frac{1}{D{{C}^{2}}}+\frac{1}{DD{{'}^{2}}}\)
\(=\frac{1}{3{{a}^{2}}}+\frac{1}{{{a}^{2}}}+\frac{1}{{{a}^{2}}}\)
\(=\frac{7}{3{{a}^{2}}}\)
Suy ra \(h=\sqrt{\frac{3}{7}}a=\frac{\sqrt{21}}{7}a.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Giá trị nhỏ nhất của hàm số \(y=\frac{x-1}{x+1}\) trên đoạn \(\left[ 0;3 \right]\) là:
Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\) thỏa mãn phương trình \(\frac{\left( \left| z \right|-1 \right)\left( 1+iz \right)}{z-\frac{1}{z}}=i.\) Tính P=a+b.
Đường cong trong hình bên phải là đồ thị của hàm số nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}.\) Biết rằng đồ thị của hàm số \(y=f'\left( x \right)\) được cho bởi hình vẽ bên. Vậy khi đó hàm số \(y=g\left( x \right)=f\left( x \right)-\frac{{{x}^{2}}}{2}\) có bao nhiêu điểm cực đại?
Điểm M trong hình bên dưới là điểm biểu diễn của số phức
Giá trị lớn nhất của hàm số \(y=4{{x}^{2}}+\frac{1}{x}-2\) trên đoạn \(\left[ -1;2 \right]\) bằng
Tìm phương trình đường tiệm cận ngang của đồ thị hàm số \(y=\frac{x-3}{3x-2}.\)
Tính thể tích khối trụ có bán kính \(R=3,\) chiều cao \(h=5.\)
Tọa độ giao điểm của đồ thị các hàm số \(y=\frac{{{x}^{2}}-2x-3}{x-2}\) và y=x+1 là
Cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có véc-tơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right).\) Phương trình tham số của đường thẳng \(\Delta \) là
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại \(A,AC=a,\widehat{ACB}={{60}^{0}}.\) Đường chéo BC' của mặt bên \(\left( BCC'B' \right)\) tạo với mặt phẳng ACC'A' một góc bằng \({{30}^{0}}\). Tính thể tích khối lăng trụ theo a.
Mô-đun của số phức \(z=\left( 1+2i \right)\left( 2-i \right)\) là
Tìm nghiệm của phương trình \({{\log }_{25}}\left( x+1 \right)=\frac{1}{2}.\)