Cho hình lăng trụ đứng \(2A=\left[ f'\left( 1 \right)+f'\left( 2018 \right) \right]+\left[ f'\left( 2 \right)+f'\left( 2017 \right) \right]+...+\left[ f'\left( 2018 \right)+f'\left( 1 \right) \right]=2018\) có AB = a, AC = 2a, \(\text{A}{{\text{A}}_{1}}=2a\sqrt{5}\) và \(\widehat{BAC}={{120}^{0}}\). Gọi K, I lần lượt là trung điểm của các cạnh \(C{{C}_{1}},B{{B}_{1}}\). Khoảng cách từ điểm I đến mặt phẳng \(({{A}_{1}}BK)\) bằng
A. \(a\sqrt {15} \)
B. \(\frac{{a\sqrt 5 }}{6}\)
C. \(\frac{{a\sqrt {15} }}{3}\)
D. \(\frac{{a\sqrt 5 }}{3}\)
Lời giải của giáo viên
Ta có \(BC=\sqrt{A{{C}^{2}}+A{{B}^{2}}-2AC.AB.cos{{120}^{0}}}=a\sqrt{7};\)
\(\begin{align} & {{A}_{1}}B=\sqrt{{{A}_{1}}{{A}^{2}}+A{{B}^{2}}}=a\sqrt{21};{{A}_{1}}K=\sqrt{{{A}_{1}}{{C}_{1}}^{2}+{{C}_{1}}{{K}^{2}}}=3a,KB=\sqrt{K{{C}^{2}}+C{{B}^{2}}}=2a\sqrt{3} \\ & d(I,({{A}_{1}}BK))=\frac{1}{2}d\left( {{B}_{1}},\left( {{A}_{1}}BK \right) \right)=\frac{1}{2}.\frac{3{{V}_{{{B}_{1}}{{A}_{1BK}}}}}{{{S}_{\Delta {{A}_{1}}BK}}} \\ \end{align}\)
Mà \({{V}_{{{B}_{1}}{{A}_{1}}BK}}=\frac{1}{2}{{V}_{K.{{A}_{1}}{{B}_{1}}BA}}=\frac{1}{2}.\frac{2}{3}{{V}_{ABC.{{A}_{1}}{{B}_{1}}{{C}_{1}}}}=\frac{1}{3}.2a\sqrt{5}.\frac{1}{2}.a.2a.\sin {{120}^{0}}=\frac{{{a}^{3}}\sqrt{15}}{3}.\)
Theo công thức Herong, diện tích tam giác \({{A}_{1}}BK\) bằng
\(S=\sqrt{p\left( p-2a\sqrt{3} \right)\left( p-3a \right)\left( p-a\sqrt{21} \right)}=3{{a}^{2}}\sqrt{3}\) với \(p=\frac{2a\sqrt{3}+3a+a\sqrt{21}}{2}\)
Vậy \(d\left( I,\left( {{A}_{1}}BK \right) \right)=\frac{3}{2}.\frac{\frac{{{a}^{3}}\sqrt{15}}{3}}{3{{a}^{2}}\sqrt{3}}=\frac{a\sqrt{5}}{6}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l} \frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}},x \ne 1\\ 3x + m,x = 1 \end{array} \right.\) liên tục tại x = 1.
Với hai số x, t dương thoả xy = 36, bất đẳng thức nào sau đây đúng?
Cho hàm số \(y={{x}^{4}}-2\left( 1-{{m}^{2}} \right){{x}^{2}}+m+1\). Tìm tất các giá trị của tham số m để hàm số cực đại, cực tiểu và các điểm cực trị của đồ thị lập thành một tam giác có diện tích lớn nhất
Hàm số \(y={{\left( x+1 \right)}^{\frac{1}{3}}}\) xác định khi \(x+1>0\Leftrightarrow x>-1\)
Mệnh đề sau đây đúng?
Cho hàm số y = f(x) có đồ thị như hình vẽ. Trên khoảng (-1;3) đồ thị hàm số y = f(x) có mấy điểm cực trị?
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\). Nếu phương trình \(f\left( x \right)=0\) có ba nghiệm phân biệt thì phương trình \(2f\left( x \right).f''\left( x \right)={{\left[ f'\left( x \right) \right]}^{2}}\) có nhiều nhất bao nhiêu nghiệm?
Số nghiệm của phương trình \({9^x} + {2.3^{x + 1}} - 7 = 0\) là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, chiều cao của chóp bằng \(\frac{a\sqrt{3}}{2}\). Góc giữa mặt bên và mặt đáy bằng
Trên đồ thị của hàm số \(y=\frac{2x-5}{3x-1}\) có bao nhiêu điểm có tọa độ là các số nguyên?
Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là (a;b). Hãy tính tổng S=a+b.
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right)=x+\frac{4}{x}\) trên đoạn [1;3] bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, \(BC=a\sqrt{3}\), mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Thể tích V của khối chóp S.ABC là
Đồ thị hàm số \(y = \frac{{2017x - 2018}}{{x + 1}}\) có đường tiệm cận đứng là
Tập xác định D của hàm số \(y = {\left( {x + 1} \right)^{\frac{1}{3}}}\) là