Cho hình trụ (T) có chiều cao bằng đường kính đáy, hai đáy là các hình tròn (O;r) và (O';r). Gọi A là điểm di động trên đường tròn (O;r) và B là điểm di động trên đường tròn (O';r) sao cho AB không là đường sinh của hình trụ (T). Khi thể tích khối tứ diện OO'AB đạt giá trị lớn nhất thì đoạn thẳng AB có độ dài bằng
A. \(\sqrt 3 r\)
B. \(\left( {2 + \sqrt 2 } \right)r\)
C. \(\sqrt 6 r\)
D. \(\sqrt 5 r\)
Lời giải của giáo viên
Kẻ các đường sinh AA', BB' của hình trụ (T).
Khi đó \({V_{OO'AB}} = \frac{1}{3}{V_{OAB'.O'A'B}} = \frac{1}{3}OO'.\left( {\frac{1}{2}OA.OB'.\sin AOB'} \right) = \frac{1}{3}{r^3}\sin AOB' \le \frac{1}{3}{r^3}\).
Dấu đẳng thức xảy ra khi và chỉ khi \(\widehat {AOB'} = 90^\circ \) hay \(OA \bot O'B\).
Như vậy, khối tứ diện OO'AB có thể tích lớn nhất bằng \(\frac{1}{3}{r^3}\), đạt được khi \(OA \bot O'B\). Khi đó \(A'B = r\sqrt 2 \) và \(AB = \sqrt {A'{A^2} + A'{B^2}} = r\sqrt 6 \).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có f(2) = 15 và \(f'(x) = \frac{{x - 7}}{{x + 2 - 3\sqrt {x + 2} }}\), \(\forall x > - 1\). Khi đó \(\int\limits_2^7 f (x){\mkern 1mu} {\rm{d}}x\) bằng
Cho hàm số \(f(x) = \left| {8{x^4} + a{x^2} + b} \right|\), trong đó a, b là tham số thực. Biết rằng giá trị lớn nhất của hàm số f(x) trên đoạn [-1;1] bằng 1. Hãy chọn khẳng định đúng?
Trong không gian Oxyz cho 2 mặt phẳng (P1): 2x-2y-z+1 = 0 và (P2): x+3y-z-3 = 0. Giả sử hai mặt phẳng cắt nhau theo giao tuyến là (d) . Hãy lập phương trình đường thẳng (d)
Tìm m để giá trị lớn nhất của hàm số \(y = \left| {{x^2} + 2{\rm{x}} + m - 4} \right|\) trên đoạn [-2;1] đạt giá trị nhỏ nhất. Giá trị của m là:
Cho số phức z thỏa mãn \(z + 2i.\overline z = 1 + 17i\). Khi đó |z| bằng
Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?
\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\)
Diện tích hình phẳng giới hạn bởi x = -1; x =2; y =0 ; y= x2 - 2x
Cho tam giác ABC vuông tai A biết AB = a, AC = b. Xét hình nón (N) sinh bởi tam giác ABC khi quay quanh đường thẳng AB. Thể tích hình nón (N) bằng:
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) \(\left( {a,b,c,d \in R} \right)\) có đồ thị như sau.
Tìm mệnh đề đúng
Cho hình trụ có chiều cao bằng \(5\sqrt 3 \). Cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 1, thiết diện thu được có diện tích bằng 30. Diện tích xung quanh của hình trụ đã cho bằng
Biết \({\log _a}b = 3,{\log _a}c = - 2\,\) và \(x\, = \,{a^3}{b^2}\sqrt c \). Giá trị của \({\log _a}x\) bằng.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và \(SA \bot \left( {ABCD} \right)\). Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại D lấy điểm S' thỏa mãn \(S'D = \frac{1}{2}SA\) và S, S' ở cùng phía đối với mặt phẳng (ABCD). Gọi V1 là thể tích phần chung của hai khối chóp S.ABCD và S'.ABCD. Gọi V2 là thể tích khối chóp S.ABCD. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng
Hình vẽ là đồ thị hàm số y = f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số \(y = \left| {f\left( {x - 1} \right) + m} \right|\) có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
Cho a, b > 0 thỏa mãn \(lo{g_{4a + 5b + 1}}\left( {16{a^2} + {b^2} + 1} \right) + lo{g_{8ab + 1}}\left( {4a + 5b + 1} \right) = 2.\)
Giá trị của a + 2b bằng?
Cho hàm số f(x) = \({\rm{a}}{{\rm{x}}^3} + b{x^2} + cx + d\) Tìm hệ số a,b,c biết f(0) = 0, f(1) = 1 và hàm số đạt cực tiểu tại x = 0 và cực đại tại x = 1.