Cho hình vuông \(V_1\) có chu vi bằng 1. Người ta nối các trung điểm của các cạnh một cách thích hợp để có hình vuông \(V_2\) (tham khảo hình vẽ bên). Từ hình vuông \(V_2\) tiếp tục làm như trên ta được dãy các hình vuông \({V_1},{\rm{ }}{V_2},{\rm{ }}{V_3},...\) Tổng chu vi các hình vuông đó bằng
A. \(2 + \sqrt 2 .\)
B. \(4\left( {2 + \sqrt 2 } \right).\)
C. \(6 + 2\sqrt 2 .\)
D. \(\frac{{3 + \sqrt 2 }}{2}.\)
Lời giải của giáo viên
Hình vuông \(V_1\) có chu vi bằng 1 nên cạnh hình vuông bằng \(\frac{1}{4}.\)
Từ đó tính được cạnh hình vuông \(V_2\) là \(\frac{{\sqrt 2 }}{8} \to \) chu vi hình vuông \(V_2\) là \(\frac{{\sqrt 2 }}{2}.\)
Tương tự tính được cạnh hình vuông \(V_3\) là \(\frac{1}{8} \to \) chu vi hình vuông \(V_3\) là \(\frac{1}{2}.\)
Tổng chu vi các hình vuông: \(1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + ...\) Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu \(u_1=1\) công bội \(q = \frac{{\sqrt 2 }}{2} \to 1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + ... = 1.\frac{1}{{1 - \frac{{\sqrt 2 }}{2}}} = 2 + \sqrt 2 .\)
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích ba mặt của hình hộp chữ nhật lần lượt là \(15c{m^2},24c{m^2},40c{m^2}\). Thể tích của khối hộp đó là
Cho tam giác ABC vuông tại A với \(AB = a,AC = 2a\) quay xung quanh cạnh AB ta được một khối nón tròn xoay có đường sinh l bằng bao nhiêu ?
Kí hiệu \(z_1, z_2, z_3, z_4\) là bốn nghiệm của phương trình \({z^4} + {z^2} - 6 = 0\). Tính \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|\).
Cho hàm số\(y=f(x)\) có đồ thị \(y=f'(x)\) cắt trục Ox tại ba điểm có hoành độ như hình vẽ.
Khẳng định nào dưới đây có thể xảy ra?
Số đường tiệm cận ngang của đồ thị hàm số \(y = x + 1 + \sqrt {{x^2} + 2x + 3} \) là
Phương trình đường tròn (C) có tâm I(1;2) và tiếp xúc với đường thẳng \(\Delta :{\rm{ }}x--2y + 7 = 0\) là:
Biết rằng đồ thị hàm số \(y = f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\) (với \(a,b,c,d,e \in R\) và \(a \ne 0;{\rm{ }}b \ne 0\)) cắt trục hoành tại 4 điểm phân biệt. Khi đó đồ thị hàm số \(g\left( x \right) = {\left[ {f'\left( x \right)} \right]^2} - f''\left( x \right).f\left( x \right) = 0\) cắt trục hoành tại bao nhiêu điểm?
Có bao nhiêu giá trị nguyên dương của m nhỏ hơn 2018 để phương trình \({e^{\sqrt {{x^2} + \frac{1}{{{x^2}}}} - \sqrt {x + \frac{1}{x} + m} }} = \frac{{{x^3} + m{x^2} + x}}{{{x^4} + 1}}\) có nghiệm thực dương?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), biết SA = 4. Gọi M, N lần lượt là chiều cao của A lên cạnh SB và SC. Thể tích khối tứ diện AMNC là
Cho hình chóp tam giác đều S.ABC có cạnh bên bằng \(2a\), góc giữa cạnh bên và mặt đáy bằng \(30^0\). Tính khoảng cách từ S đến mặt phẳng (ABC)
Tìm tập xác định của hàm số \(y = \sqrt {{{\log }_{\frac{1}{3}}}\left( {x - 3} \right)} .\)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a, SA\) vuông góc với mặt đáy, SD tạo với mặt phẳng (SAB) một góc bằng \(30^0\). Tính thể tích V của khối chóp.
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là
Biết rằng \(\int\limits_0^\pi {{e^x}\cos xdx} = a{e^\pi } + b\) trong đó \(a,b \in Q\). Tính \(P=a+b\)
Cho \(a = {\log _2}m\) và \(A = {\log _m}8m\), với \(0 < m \ne 1\). Khẳng định nào sau đây là đúng?