Cho số phức \(z\) thỏa mãn \(\left| {z + \sqrt {15} } \right| + \left| {z - \sqrt {15} } \right| = 8\) và \(\left| {z + \sqrt {15} i} \right| + \left| {z - \sqrt {15} i} \right| = 8.\) Tính \(\left| z \right|.\)
A. \(\left| z \right| = \dfrac{{4\sqrt {34} }}{{17}}.\)
B. \(\left| z \right| = \dfrac{{2\sqrt 5 }}{5}.\)
C. \(\left| z \right| = \dfrac{4}{5}.\)
D. \(\left| z \right| = \dfrac{5}{4}.\)
Lời giải của giáo viên
Gọi \(M\left( {x;y} \right)\) biểu diễn số phức \(z\).
Gọi điểm \(A\left( { - \sqrt {15} ;0} \right),B\left( {\sqrt {15} ;0} \right)\) thì từ \(\left| {z + \sqrt {15} } \right| + \left| {z - \sqrt {15} } \right| = 8 \Rightarrow MA + MB = 8\) hay tập hợp điểm \(M\) là elip có \(c = \sqrt {15} ,2a = 8 \Rightarrow a = 4 \Rightarrow b = \sqrt {{a^2} - {c^2}} = 1\) \( \Rightarrow \) phương trình \(\left( {{E_1}} \right):\dfrac{{{x^2}}}{{16}} + {y^2} = 1\).
Gọi điểm \(C\left( {0; - \sqrt {15} } \right),D\left( {0;\sqrt {15} } \right)\) thì từ \(\left| {z + \sqrt {15} i} \right| + \left| {z - \sqrt {15} i} \right| = 8 \Rightarrow MC + MD = 8\) hay tập hợp điểm \(M\) là elip có \(c' = \sqrt {15} ,2b' = 8 \Rightarrow b' = 4 \Rightarrow a' = \sqrt {b{'^2} - c{'^2}} = 1\)\( \Rightarrow \) phương trình \(\left( {{E_2}} \right):{x^2} + \dfrac{{{y^2}}}{{16}} = 1\).
Do \(M \in \left( {{E_1}} \right),M \in \left( {{E_2}} \right)\) nên tọa độ \(M\) thỏa mãn \(\left\{ \begin{array}{l}\dfrac{{{x^2}}}{{16}} + {y^2} = 1\\{x^2} + \dfrac{{{y^2}}}{{16}} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} = \dfrac{{16}}{{17}}\\{y^2} = \dfrac{{16}}{{17}}\end{array} \right. \Rightarrow \left| z \right| = \sqrt {{x^2} + {y^2}} = \dfrac{{4\sqrt {34} }}{{17}}\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \({\log _2}b = 4,\,\;{\log _2}c = - 4;\) khi đó \({\log _2}({b^2}c)\) bằng
Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là
Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là
Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng
Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là
Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng?
Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là
Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng?
Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng
Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là
Cho hàm số \(y = f\left( x \right)\) liên tục trên \({\rm{[}}1;2{\rm{]}}.\) Quay hình phẳng \(\left( H \right) = \left\{ {y = f(x),y = 0,x = 1,x = 2} \right\}\) xung quanh trục \(Ox\) được khối tròn xoay có thể tích
Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(2a,\) \(O\) là trọng tâm tam giác \(ABC\) và \(A'O = \dfrac{{2a\sqrt 6 }}{3}.\) Thể tích của khối lăng trụ \(ABC.A'B'C'\) bằng
Cho hàm số \(y = f(x)\) có bảng biến thiên trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ. Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(f\left( {3\sin x + 2} \right) = m\) có đúng 3 nghiệm phân biệt trên khoảng \(\left( { - \dfrac{\pi }{2};\pi } \right)\)?
Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(a\sqrt 2 .\) Mặt phẳng \(\left( P \right)\) qua \(S\) cắt đường tròn đáy tại \(A,B\) sao cho \(AB = 2a.\) Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng \(\left( P \right)\) là \(\dfrac{{4a\sqrt {17} }}{{17}}.\) Thể tích khối nón bằng
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {2\sin \,\dfrac{x}{2}\cos \dfrac{x}{2} + 3} \right)\) bằng