Cho tập hợp \(X\) gồm các số tự nhiên có 6 chữ số khác nhau có dạng \(\overline {abcdef} \) . Từ tập \(X\) lấy ngẫu nhiên một số. Tính xác suất để số lấy ra là số lẻ và thõa mãn \(a < b < c < d < e < f.\)
A. \(\frac{{29}}{{68040}}\)
B. \(\frac{1}{{2430}}\)
C. \(\frac{{31}}{{68040}}\)
D. \(\frac{{33}}{{68040}}\)
Lời giải của giáo viên
+ Số có 6 chữ số khác nhau là \(\overline {abcdef} \) với \(a,\,\,b,\,\,c,\,\,d,\,\,e,\,\,f \in \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8;\,\,9} \right\}\)
Nên \(a\) có 9 cách chọn, \(b\) có 9 cách chọn, \(c\) có 8 cách chọn, \(d\) có 7 cách chọn, \(e\) có 6 cách chọn và \(f\) có 5 cách chọn.Suy ra số phần tử của không gian mẫu \(n\left( \Omega \right) = 9.9.8.7.6.5 = 136080\)
+ Gọi A là biến cố ‘’\(\overline {abcdef} \) là số lẻ và \(a < b < c < d < e < f.\)”
Suy ra không thể có chữ số \(0\) trong số \(\overline {abcdef} \) và \(f \in \left\{ {7;\,\,9} \right\}.\)
+ Nếu \(f = 7 \Rightarrow a,b,c,d,e \in \left\{ {1;2;3;4;5;6} \right\}\) mà với mỗi bộ \(5\) số được lấy ra ta chỉ ó duy nhất 1 cách sắp xếp theo thứ tự tăng dần nên có thể lập được \(C_6^5 = 6\) số thỏa mãn.
+ Nếu \(f = 9 \Rightarrow a,\,b,\,\,c,\,\,d,\,\,e \in \left\{ {1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8} \right\}\) mà với mỗi bộ \(5\) số được lấy ra ta chỉ ó duy nhất 1 cách sắp xếp theo thứ tự tăng dần nên có thể lập được \(C_8^5 = 56\) số thỏa mãn.
Suy ra \(n\left( A \right) = 6 + 56 = 62\) nên xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{62}}{{136080}} = \frac{{31}}{{68040}}\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2 - 2x}}{{x + 1}}\).
Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số \(y = f'\left( x \right)\) có đồ thị được cho như hình vẽ dưới đây và \(f\left( 0 \right) + f\left( 1 \right) - 2f\left( 2 \right) = f\left( 4 \right) - f\left( 3 \right)\). Tìm giá trị nhỏ nhất \(m\) của hàm số \(y = f\left( x \right)\) trên \(\left[ {0;4} \right]\).
Tìm nghiệm của phương trình \({\log _2}\left( {3x - 2} \right) = 3\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(SA\) vuông góc với mặt phẳng\(\left( {ABC} \right)\)và \(AB = 2,AC = 4,SA = \sqrt 5 \). Mặt cầu đi qua các đỉnh của hình chóp \(S.ABC\) có bán kính là
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({x^3} - 3{x^2} + 2 - m = 0\) có ba nghiệm phân biệt.
Tìm tập xác định \(D\) của hàm số \(y = {\left( {{x^2} - 3x - 4} \right)^{\sqrt {2 - \sqrt 3 } }}\).
Cho hàm số \(f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2.\) Tìm tất cá các giá trị thực của tham số \(m\) để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị.
Có bao nhiêu số nguyên dương \(m\) sao cho đường thẳng \(y = x + m\) cắt đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) tại hai điểm phân biệt \(A,B\) và \(AB \le 4\)?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\sqrt 2 .\) Biết \(SA\) vuông góc với đáy và \(SC = a\sqrt 5 .\) Tính thể tích \(V\) của khối chóp đã cho.
Gọi \({x_1},{x_2}\) là nghiệm của phương trình \({7^{{x^2} - 5x + 9}} = 343\). Tính \({x_1} + {x_2}\).
Tìm tất cả các giá trị khác nhau của tham số \(m\) để hàm số \(y = \frac{{{5^{ - x}} + 2}}{{{5^{ - x}} - m}}\) đồng biến trên \(\left( { - \infty ;0} \right)\).
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?
Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\log _2^2x + {\log _2}x - m = 0\) có nghiệm \(x \in \left( {0;1} \right)\).
Thiết diện qua trục của hình nón tròn xoay là một tam giác đều cạnh \(2a.\) Tính thể tích \(V\) của khối nón đó.
Cho lăng trụ tam giác đều, có độ dài tất cả các cạnh bằng \(2\). Tính thể tích \(V\) của khối lăng trụ đó.