Lời giải của giáo viên
Số cách lấy ra 3 điểm bất kì từ các điểm đã lấy là \(C_{18}^3\)
Để lấy ra bộ ba điểm không tạo thành một tam giác, ta lấy 3 điểm nằm trên một cạnh và số bộ như vậy là \(C_3^3 + C_4^3 + C_5^3 + C_6^3 = 35\)
Vậy số tam giác có 3 đỉnh thuộc các điểm đã cho là \(C_{18}^3 - 35 = 781\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp đều S.ABC có độ dài cạnh đáy bằng 2, điểm M thuộc cạnh SA sao cho SA=4SM và SA vuông góc với mặt phẳng ABCD. Thể tích V của khối chóp S.ABC là
Cho hình chóp S.ABĐ có đáy ABCD là hình chữ nhật, \(AB = AD\sqrt 2 ,\,\,SA \bot \left( {ABC} \right)\). Gọi M là trung điểm của AB. Góc giữa hai mặt phẳng (SAC) và (SDM) bằng
Cho \(a = {\log _2}5\). Tính \({\log _4}1250\) theo \(a\).
Tìm giá trị lớn nhất của hàm số \(y = x - {e^{2x}}\) trên đoạn \(\left[ { - 1;1} \right]\).
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.
Khẳng định nào dưới đây đúng?
Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn \((C_1)\) và \((C_2)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \frac{{ax + b}}{{x + c}}\) đi qua tâm của \((C_1)\), đi qua tâm của \(( C_2)\) và có các đường tiệm cận tiếp xúc với cả \((C_1)\) và \((C_2)\). Tổng \(a+b+c\) là
Thể tích của khối chóp có diện tích đáy bằng 6 và chiều cao bằng 4 là
Bất phương trình \({\log _3}\left( {{x^2} - 2x} \right) > 1\) có tập nghiệm là
Tính thể tích \(V\) của khối chóp tứ giác đều \(S.ABCD\) mà \(SAC\) là tam giác đều cạnh \(a\).
Hàm số \(y = \frac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm
Biết \({\log _2}\left( {\sum\limits_{k = 1}^{100} {\left( {k \times {2^k}} \right)} - 2} \right) = a + {\log _c}b\) với \(a,b,c\) là các số nguyên và \(a > b > c > 1\). Tổng \(a + b + c\) là
Số nghiệm của phương trình \({50^x} + {2^{x + 5}} = {3.7^x}\) là
Với \(a\) là số thực dương khác 1 tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
Cho hàm số \(f\left( x \right) = \ln x - x\). Khẳng định nào dưới đây đúng?