Lời giải của giáo viên
Gọi z=x+yi, \(\left( x\,,\,y\in \mathbb{R} \right)\). Theo giả thiết ta có
\(\left| \bar{z}+1-2i \right|=\left| z+3+4i \right| \Leftrightarrow \left| x-yi+1-2i \right|=\left| x+yi+3+4i \right| \Leftrightarrow \left| \left( x+1 \right)-\left( y+2 \right)i \right|=\left| \left( x+3 \right)+\left( y+4 \right)i \right| \left( 1 \right)\).
\(\frac{\bar{z}-2i}{z+i} =\frac{x-yi-2i}{x+yi+i} =\frac{{{x}^{2}}-\left( y+1 \right)\left( y+2 \right)}{{{x}^{2}}+{{\left( y+1 \right)}^{2}}}-\frac{2xy+3x}{{{x}^{2}}+{{\left( y+1 \right)}^{2}}}i =\frac{{{x}^{2}}-{{y}^{2}}-3y-2}{{{x}^{2}}+{{\left( y+1 \right)}^{2}}}-\frac{2xy+3x}{{{x}^{2}}+{{\left( y+1 \right)}^{2}}}i\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình
\(\left\{ \begin{array}{l} {\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2}\\ {x^2} - \left( {y + 1} \right)\left( {y + 2} \right) = 0 \end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} 4x + 4y = - 20\\ {x^2} - {y^2} - 3y - 2 = 0 \end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} x = - 5 - y\\ {\left( { - 5 - y} \right)^2} - {y^2} - 3y - 2 = 0 \end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} x = - \frac{{12}}{7}\\ y = - \frac{{23}}{7} \end{array} \right.\)
Hệ phương trình có nghiệm duy nhất nên có 1 số phức z thỏa mãn bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, mặt cầu \(\left( S \right) :{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-2=0\) có tọa độ tâm I là
Cho hàm số \(y=g(x)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Cho hàm số \(f\left( x \right)=\frac{{{3}^{x}}}{{{3}^{x}}+{{m}^{2}}}\) với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho \(f\left( a \right)+f\left( b \right)=1\) với mọi số thực a, b thoả mãn \({{e}^{a+b}}\le e\left( a+b \right)\). Số các phần tử của S là
Tính thể tích của khối lăng trụ đứng \(ABCD.{A}'{B}'{C}'{D}'\) có đáy là hình vuông cạnh 5 và \(B{B}'=6\)
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( 1;0\,;\,-1 \right)\), đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}\) và mặt phẳng \(\left( P \right):4x+y+z+1=0\). Viết phương trình đường thẳng d đi qua M, cắt \(\Delta \) tại N, cắt \(\left( P \right)\) tại E sao cho M là trung điểm của NE.
Tích phân \(\int_{ - 1}^3 {\left( {3{x^2} - 1} \right)} \;{\rm{d}}x\) bằng
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 2019 số nguyên x thỏa mãn bất phương trình \({{x}^{2}}-\left( y+3 \right)x+3y<\left( y-x \right){{\log }_{2}}x\)
Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} \right) < 0\) là
Hàm số nào sau đây có chiều biến thiên khác với chiều biến thiên của các hàm số còn lại.
Trong mặt phẳng tọa độ Oxy, số phức liên hợp của số phức \(z=\left( 1+2i \right)\left( 1-i \right)\) có điểm biểu diễn là điểm nào sau đây?
Trong không gian Oxyz, cho ba điểm \(A\left( -2;1;3 \right), B\left( 5;0;2 \right)\) và \(C\left( 0;2;4 \right)\). Trọng tâm của tam giác ABC có tọa độ là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên:
Nghiệm của phương trình \({3^{{x^2} - 5x + 6}} = 1\) là:
Với a là số thực dương tùy ý, \({{a}^{2}}.{{a}^{3}}\) bằng
Một khối lăng trụ có diện tích đáy bằng 6 và chiều cao bằng 5. Thể tích của khối lăng trụ đó bằng