Đạo hàm của hàm số \(f\left( x \right) = {\log _2}\left( {3{x^2} + 2} \right)\) là
A. \(f'\left( x \right) = \dfrac{1}{{\left( {3{x^2} + 2} \right)\ln 2}}.\)
B. \(f'\left( x \right) = \dfrac{{6x.\ln 2}}{{3{x^2} + 2}}.\)
C. \(f'\left( x \right) = \dfrac{{6x}}{{\left( {3{x^2} + 2} \right)\ln 2}}.\)
D. \(f'\left( x \right) = \dfrac{{\ln 2}}{{3{x^2} + 2}}.\)
Lời giải của giáo viên
Ta có \(f'\left( x \right) = \left( {{{\log }_2}\left( {3{x^2} + 2} \right)} \right) = \dfrac{{{{\left( {3{x^2} + 2} \right)}^\prime }}}{{\left( {3{x^2} + 2} \right)\ln 2}} = \dfrac{{6x}}{{\left( {3{x^2} + 2} \right)\ln 2}}\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \({\log _2}b = 4,\,\;{\log _2}c = - 4;\) khi đó \({\log _2}({b^2}c)\) bằng
Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là
Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là
Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng
Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng?
Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng?
Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là
Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là
Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng
Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là
Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có cạnh đáy bằng \(2a,\) \(O\) là trọng tâm tam giác \(ABC\) và \(A'O = \dfrac{{2a\sqrt 6 }}{3}.\) Thể tích của khối lăng trụ \(ABC.A'B'C'\) bằng
Cho hàm số \(y = f\left( x \right)\) liên tục trên \({\rm{[}}1;2{\rm{]}}.\) Quay hình phẳng \(\left( H \right) = \left\{ {y = f(x),y = 0,x = 1,x = 2} \right\}\) xung quanh trục \(Ox\) được khối tròn xoay có thể tích
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {2\sin \,\dfrac{x}{2}\cos \dfrac{x}{2} + 3} \right)\) bằng
Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(a\sqrt 2 .\) Mặt phẳng \(\left( P \right)\) qua \(S\) cắt đường tròn đáy tại \(A,B\) sao cho \(AB = 2a.\) Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng \(\left( P \right)\) là \(\dfrac{{4a\sqrt {17} }}{{17}}.\) Thể tích khối nón bằng
Trong không gian Oxyz, cho điểm \(M\left( {2017;2018;2019} \right)\). Hình chiếu vuông góc của điểm M trên trục Oz có tọa độ là: