Đặt \(a = {\log _7}11,b = {\log _2}7.\) Hãy biểu diễn \({\log _{\sqrt[3]{7}}}\frac{{121}}{8}\) theo \(a\) và \(b.\)
A. \({\log _{\sqrt[3]{7}}}\frac{{121}}{8} = 6a + \frac{9}{b}\)
B. \({\log _{\sqrt[3]{7}}}\frac{{121}}{8} = 6a - \frac{9}{b}\)
C. \({\log _{\sqrt[3]{7}}}\frac{{121}}{8} = 6a - 9b\)
D. \({\log _{\sqrt[3]{7}}}\frac{{121}}{8} = \frac{2}{3}a - \frac{9}{b}\)
Lời giải của giáo viên
Ta có :
\(\begin{array}{l}\,\,\,{\log _{\sqrt[3]{7}}}\frac{{121}}{8} = {\log _{\sqrt[3]{7}}}121 - {\log _{\sqrt[3]{7}}}8 = {\log _{{7^{\frac{1}{3}}}}}{11^2} - {\log _{{7^{\frac{1}{3}}}}}{2^3}\\ = 6{\log _7}11 - 9{\log _7}2 = 6{\log _7}11 - 9.\frac{1}{{{{\log }_2}7}} = 6a - \frac{9}{b}.\end{array}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2 - 2x}}{{x + 1}}\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(SA\) vuông góc với mặt phẳng\(\left( {ABC} \right)\)và \(AB = 2,AC = 4,SA = \sqrt 5 \). Mặt cầu đi qua các đỉnh của hình chóp \(S.ABC\) có bán kính là
Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số \(y = f'\left( x \right)\) có đồ thị được cho như hình vẽ dưới đây và \(f\left( 0 \right) + f\left( 1 \right) - 2f\left( 2 \right) = f\left( 4 \right) - f\left( 3 \right)\). Tìm giá trị nhỏ nhất \(m\) của hàm số \(y = f\left( x \right)\) trên \(\left[ {0;4} \right]\).
Tìm nghiệm của phương trình \({\log _2}\left( {3x - 2} \right) = 3\).
Tìm tập xác định \(D\) của hàm số \(y = {\left( {{x^2} - 3x - 4} \right)^{\sqrt {2 - \sqrt 3 } }}\).
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({x^3} - 3{x^2} + 2 - m = 0\) có ba nghiệm phân biệt.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\sqrt 2 .\) Biết \(SA\) vuông góc với đáy và \(SC = a\sqrt 5 .\) Tính thể tích \(V\) của khối chóp đã cho.
Có bao nhiêu số nguyên dương \(m\) sao cho đường thẳng \(y = x + m\) cắt đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) tại hai điểm phân biệt \(A,B\) và \(AB \le 4\)?
Cho hàm số \(f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2.\) Tìm tất cá các giá trị thực của tham số \(m\) để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị.
Gọi \({x_1},{x_2}\) là nghiệm của phương trình \({7^{{x^2} - 5x + 9}} = 343\). Tính \({x_1} + {x_2}\).
Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\log _2^2x + {\log _2}x - m = 0\) có nghiệm \(x \in \left( {0;1} \right)\).
Phương trình \({\sin ^2}x + \sqrt 3 \sin x\cos x = 1\)có bao nhiêu nghiệm thuộc \(\left[ {0;2\pi } \right]?\)
Thiết diện qua trục của hình nón tròn xoay là một tam giác đều cạnh \(2a.\) Tính thể tích \(V\) của khối nón đó.
Cho lăng trụ tam giác đều, có độ dài tất cả các cạnh bằng \(2\). Tính thể tích \(V\) của khối lăng trụ đó.
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?