Để quảng bá cho sản phẩm A, một công ty dự định tổ chức quảng cáo theo hình thức quảng cáo trên truyền hình. Nghiên cứu của công ty cho thấy : nếu sau n lần quảng cáo được phát thì tỷ lệ người xem quảng cáo đó mua sản phẩm A tuân theo công thức \(P\left( n \right) = \frac{1}{{1 + 49{e^{ - 0,015t}}}}\,\,\left( \% \right)\). Hỏi cần phát ít nhất bao nhiều lần quảng cáo để tỷ lệ người xem mua sản phẩm đạt trên 80% ?
A. 356
B. 348
C. 352
D. 344
Lời giải của giáo viên
Để tỷ lệ người xem mua sản phẩm đạt trên 80% thì điều kiện là \(P\left( t \right) = \frac{1}{{1 + 49{e^{ - 0,015t}}}} > \frac{4}{5}\)
\( \Leftrightarrow 1 + 49{e^{ - 0,015t}} < \frac{5}{4}\)
\( \Leftrightarrow t > 351,87\)
Do n là số nguyên nên \(n \ge 352\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có \(f\left( {\frac{\pi }{2}} \right) = 0\) và \(f'(x) = sinx.si{n^2}2x,\forall x \in R\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f(x)dx} \) bằng
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị là đường cong trong hình vẽ bên.
Đặt g(x) = f[f(x)] Tìm số nghiệm của phương trình g'(x) = 0
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình vẽ a, b, c là các số nguyên. Giá trị của biểu thức T = a - 3b + 2c bằng:
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3;1;-1) trên trục Oy có tọa độ là
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Cho phương trình \(lo{g_9}{x^2} - {\log _3}\left( {3x - 1} \right) = - {\log _3}m\). Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có nghiệm?
Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = {x^{\frac{1}{2}}}.{e^{\frac{x}{2}}}\), x = 1, x = 2, y = 0 quanh trục Ox được tính bởi biểu thức nào sau đây?
Cho hình hộp ABCD.A'B'C'D' thể tích là V. Tính thể tích của tứ diện ACB'D' theo V.
Cho hàm số bậc ba \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình sau:
Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} - 3x + 2} \right)\sqrt {x - 1} }}{{x\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
Hình dưới đây là đồ thị của hàm số \(f\left( x \right) = a{x^3} + bx + c\).
Khẳng định nào dưới đây là đúng?
Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Biết \({\int\limits_0^1 {f\left( x \right)dx} }=2\) và \({\int\limits_0^1 {g\left( x \right)dx} } = -4\), khi đó \({\int\limits_0^1 [{f\left( x \right)} }+g(x)]dx\) bằng
Cho hình nón có đường sinh bằng 3, diện tích xung quanh bằng \(12\pi\). Bán kính đáy của hình nón là: