Diện tích của hình phẳng giới hạn bởi các đường \(\left( C \right):y={{x}^{2}}+2x;\,\,\left( d \right):y=x+2\) được tính bởi công thức nào dưới đây?
A. \(S = \pi \int_{ - 2}^1 {\left( {{x^2} + x - 2} \right)} {\rm{d}}x\)
B. \(S = \int_{ - 2}^1 {\left( {{x^2} + x - 2} \right)} {\rm{d}}x\)
C. \(S = - \int_{ - 2}^1 {\left( {{x^2} + x - 2} \right)} {\rm{d}}x\)
D. \(S = {\int_{ - 2}^1 {\left( {{x^2} + x - 2} \right)} ^2}{\rm{d}}x\)
Lời giải của giáo viên
Xét phương trình: \({{x}^{2}}+x-2=0\Leftrightarrow \left[ \begin{align} & x=-2 \\ & x=1 \\ \end{align} \right.\)
Suy ra \(S=\int\limits_{-2}^{1}{\left| {{x}^{2}}+x-2 \right|dx}=-\int\limits_{-2}^{1}{\left( {{x}^{2}}+x-2 \right)dx}\,\,\left( do\,\,{{x}^{2}}+x-2\le 0,\,\,\forall x\in \left[ -2;1 \right] \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(2f\left( x \right)+1=0\) là
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với công sai d=3 và \({{u}_{2}}=9\). Số hạng \({{u}_{1}}\) của cấp số cộng bằng
Có bao nhiêu giá trị nguyên âm của m để hàm số \(y={{x}^{4}}-4{{x}^{3}}+\left( m+25 \right)x-1\) đồng biến trên khoảng \(\left( 1;+\infty \right)\).
Xét các số thực a và b thỏa mãn \({{2}^{a}}{{.4}^{b}}=8.\) Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có bảng xét dấu của \(f^{\prime}(x)\) như sau:
Số điểm cực trị của hàm số đã cho là
Cho hàm số y = f(x) có bảng biến thiên sau
Số nghiệm của phương trình 2f(x) - 1 = 0 là
Giá trị lớn nhất của hàm số \(f(x)=\frac{x-2}{x+3}\) trên đoạn [-1 ; 2] bằng
Gọi \({{z}_{0}}\) là nghiệm có phần ảo dương của phương trình \({{z}^{2}}+2z+5=0.\) Điểm biểu diễn của số phức \({{z}_{0}}+3i\) là
Số giao điểm của đồ thị hàm số \(\left( c \right):y={{x}^{4}}-5{{x}^{2}}+4\) và trục hoành là
Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn điều kiện \({\log _2}\frac{{x + 2}}{{y + 1}} + {x^2} + 4x = 4{y^2} + 8y + 1\).
Tìm tập nghiệm của bất phương trình \({\left( {\frac{1}{2}} \right)^x} \ge 2\)
Cho khối nón có chiều cao h = 3, bán kính r = 4. Độ dài đường sinh của khối nón bằng
Cho khối chóp có diện tich đáy B=3 và thể tích V = 4. Chiều cao của khối chóp đã cho bằng
Cho hàm số \(y=g\left( x \right)\) xác định và liên tục trên khoảng \(\left( -\infty ;+\infty\right),\) có bảng biến thiên như hình sau:
Mệnh đề nào sau đây đúng?