Do thời tiết ngày càng khắc nghiệt và nhà cách xa trường học, nên một thầy giáo muốn đúng 5 năm nữa có 500 triệu đồng để mua ô tô đi làm. Để đạt nguyện vọng, thầy có ý định mỗi tháng dành ra một số tiền cố định gửi vào ngân hàng (hình thức lãi kép) với lãi suất 0,5%/tháng. Hỏi số tiền ít nhất cần dành ra mỗi tháng để gửi tiết kiệm là bao nhiêu. (chọn đáp án gần nhất với số tiền thực)
A. 7.632.000
B. 6.820.000
C. 7.540.000
D. 7.131.000
Lời giải của giáo viên
Gọi số tiền ít nhất mà thầy giáo cần dành ra mỗi tháng để gửi tiết kiệm là x (đồng).
Số tiền tiết kiệm gửi vào ngân hàng sau 60 tháng là
\({{T}_{60}}=x\left( 1,{{005}^{1}}+1,{{005}^{2}}+...+1,{{005}^{60}} \right)=x.1,005.\frac{1,{{005}^{60}}-1}{0,005}\)
Theo bài ta có: \(x.1,005.\frac{1,{{005}^{60}}-1}{0,005}={{5.10}^{8}}\Leftrightarrow a=\frac{{{5.10}^{8}}.0,005}{1,005\left( 1,{{005}^{60}}-1 \right)}=7130747\) (đồng)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l} \frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}},x \ne 1\\ 3x + m,x = 1 \end{array} \right.\) liên tục tại x = 1.
Với hai số x, t dương thoả xy = 36, bất đẳng thức nào sau đây đúng?
Cho hàm số \(y={{x}^{4}}-2\left( 1-{{m}^{2}} \right){{x}^{2}}+m+1\). Tìm tất các giá trị của tham số m để hàm số cực đại, cực tiểu và các điểm cực trị của đồ thị lập thành một tam giác có diện tích lớn nhất
Hàm số \(y={{\left( x+1 \right)}^{\frac{1}{3}}}\) xác định khi \(x+1>0\Leftrightarrow x>-1\)
Mệnh đề sau đây đúng?
Số nghiệm của phương trình \({9^x} + {2.3^{x + 1}} - 7 = 0\) là
Cho hàm số y = f(x) có đồ thị như hình vẽ. Trên khoảng (-1;3) đồ thị hàm số y = f(x) có mấy điểm cực trị?
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, chiều cao của chóp bằng \(\frac{a\sqrt{3}}{2}\). Góc giữa mặt bên và mặt đáy bằng
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\). Nếu phương trình \(f\left( x \right)=0\) có ba nghiệm phân biệt thì phương trình \(2f\left( x \right).f''\left( x \right)={{\left[ f'\left( x \right) \right]}^{2}}\) có nhiều nhất bao nhiêu nghiệm?
Trên đồ thị của hàm số \(y=\frac{2x-5}{3x-1}\) có bao nhiêu điểm có tọa độ là các số nguyên?
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right)=x+\frac{4}{x}\) trên đoạn [1;3] bằng
Giải bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\) được tập nghiệm là (a;b). Hãy tính tổng S=a+b.
Đồ thị hàm số \(y = \frac{{2017x - 2018}}{{x + 1}}\) có đường tiệm cận đứng là
Tập xác định D của hàm số \(y = {\left( {x + 1} \right)^{\frac{1}{3}}}\) là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, \(BC=a\sqrt{3}\), mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Thể tích V của khối chóp S.ABC là