Câu hỏi Đáp án 2 năm trước 37

Gọi M và m là giá trị lớn nhất và giá trị nhỏ nhất của H = \(\left( x+y \right)\,\left( \frac{1}{x}+\frac{1}{y} \right)\). Biết x, y thoả mãn điều kiện \(1\le x\le y\le 2.\) Hỏi giá trị của tích M.m là

A. 8

B. 4

C. 18

Đáp án chính xác ✅

D. 28

Lời giải của giáo viên

verified HocOn247.com

Ta có H = \(\left( x+y \right)\,\left( \frac{1}{x}+\frac{1}{y} \right)\,=\,2+\frac{x}{y}+\frac{y}{x}\).

Vì thế nếu đặt \(t=\frac{x}{y}\) ta có hàm số theo biến số t sau: \(H(t)=\,2+t+\frac{1}{t}.\)

Từ điều kiện ràng buộc \(1\le x\le y\le 2\) ta suy ra: \(\frac{1}{2}\le \frac{x}{y}\le 1\), do đó \(t\in \left[ \,\frac{1}{2};\,1 \right]\).

Bài toán trở thành: Tìm GTLN và GTNN của hàm số \(H(t)=\,2+t+\frac{1}{t}\) trên \(\left[ \frac{1}{2}\,\,;\,\,1 \right]\).

Vì \({{H}^{'}}(t)=\,\frac{1-{{t}^{2}}}{{{t}^{2}}}\le 0\,\,\,\forall t\in \left[ \frac{1}{2}\,;\,1 \right]\) nên H(t) là hàm số nghịch biến trên đoạn \(\left[ \frac{1}{2}\,\,;\,\,1 \right]\)

Từ đó: GTLN của H(t) trên đoạn \(\left[ \frac{1}{2}\,\,;\,\,1 \right]\) là \(\frac{9}{2}\) khi: t =\(\frac{1}{2}\).

GTNN trên đoạn này của H(t) bằng 4 khi: t = 1.

Đáp số: Max(H) = \(\frac{9}{2}\) \(\Leftrightarrow \)(x; y) = (1; 2) ; Min(H) = 4 \(\Leftrightarrow \) x = y (với \(1\le x,y\le 2).\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+2}\) là đường thẳng

Xem lời giải » 2 năm trước 50
Câu 2: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d,\left( a,b,c\in \mathbb{R},a\ne 0 \right)\) có đồ thị \(\left( C \right)\). Biết rằng đồ thị \(\left( C \right)\) tiếp xúc với đường thẳng \(y=9x-18\) tại điểm có hoành độ dương.Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị \(\left( C \right)\) và trục hoành.

Xem lời giải » 2 năm trước 46
Câu 3: Trắc nghiệm

Trong các hàm số sau, hàm số nào nghịch biến trên \(R\)?

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Cho cấp số cộng \(\left(u_{n}\right)\) có \({{u}_{1}}=5\) và \(d=-3\). Giá trị của \({{u}_{6}}\) bằng

Xem lời giải » 2 năm trước 44
Câu 5: Trắc nghiệm

Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 10 số nguyên x thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0\)?

Xem lời giải » 2 năm trước 44
Câu 6: Trắc nghiệm

Cho khối lăng trụ có diện tích đáy \(B=6\), và chiều cao \(h=3\). Thể tích của khối lăng trụ đã cho bằng.

Xem lời giải » 2 năm trước 44
Câu 7: Trắc nghiệm

Cho số phức \(z=4-2i\). Trong mặt phẳng tọa độ, điểm nào dưới đây biểu diễn số phức \(\overline{z}\)

Xem lời giải » 2 năm trước 44
Câu 8: Trắc nghiệm

Với \(a\) là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Có bao nhiêu số phức \(z\) thỏa mãn \(\left| z \right|=\sqrt{5}\) và \(\left( z-3i \right)\left( \bar{z}+2 \right)\) là số thực?

Xem lời giải » 2 năm trước 43
Câu 10: Trắc nghiệm

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

Xem lời giải » 2 năm trước 43
Câu 11: Trắc nghiệm

Đạo hàm của hàm số \(y={{\log }_{3}}x\) là:

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(\sqrt{3}\) và chiều cao \(h=4\). Thể tích khối chóp \(S.ABC\) bằng

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=\frac{x+1}{x-3}\) trên đoạn \(\left[ 0;2 \right]\). Tích \(M.m\) bằng:

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Có bao nhiêu số nguyên dương \(y\)sao cho ứng với mỗi \(y\) có không quá 8 số nguyên \(x\) thỏa mãn \(\left( {{5.3}^{x}}-4 \right)\left( {{3}^{x}}-y \right)<0?\)

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Trong một hộp có 100 thẻ được đánh số từ 1 đến 100. Chọn ngẫu nhiên 1 thẻ, xác suất để chữ số ghi trên thẻ được chọn là một số chia hết cho 4 là bao nhiêu?

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »