Kí hiệu \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({{\rm{z}}^2} + z + {2019^{2018}} = 0.\) Giá trị \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng
A. \({2019^{1009}}.\)
B. \({2019^{2010}}.\)
C. \({2019^{2019}}.\)
D. \({2.2019^{1009}}.\)
Lời giải của giáo viên
Ta có \({{\rm{z}}^2} + z + {2019^{2018}} = 0 \Leftrightarrow {\left( {z + \dfrac{1}{2}} \right)^2} - \dfrac{1}{4} + {2019^{2018}} = 0 \Leftrightarrow {\left( {z + \dfrac{1}{2}} \right)^2} = \dfrac{1}{4} - {2019^{2018}}\)
\( \Leftrightarrow {\left( {z + \dfrac{1}{2}} \right)^2} = \left( {{{2019}^{2018}} - \dfrac{1}{4}} \right).{i^2} \Leftrightarrow \left[ \begin{array}{l}z = - \dfrac{1}{4} - \sqrt {{{2019}^{2018}} - \dfrac{1}{4}} .i\\z = - \dfrac{1}{4} + \sqrt {{{2019}^{2018}} - \dfrac{1}{4}} .i\end{array} \right.\)
Suy ra \({z_1} = - \dfrac{1}{2} - \sqrt {{{2019}^{2018}} - \dfrac{1}{4}} .i \Rightarrow \left| {{z_1}} \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{2019}^{2018}} - \dfrac{1}{4}} = \sqrt {{{2019}^{2018}}} = {2019^{1009}}\)
\({z_2} = - \dfrac{1}{2} + \sqrt {{{2019}^{2018}} - \dfrac{1}{4}} .i \Rightarrow \left| {{z_2}} \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{2019}^{2018}} - \dfrac{1}{4}} = \sqrt {{{2019}^{2018}}} = {2019^{1009}}\)
Do đó \(\left| {{z_1}} \right| + \left| {{z_2}} \right| = {2019^{1009}} + {2019^{1009}} = {2.2019^{1009}}\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \({\log _2}b = 4,\,\;{\log _2}c = - 4;\) khi đó \({\log _2}({b^2}c)\) bằng
Tích các nghiệm thực của phương trình \(\log _2^2x + \sqrt {3 - {{\log }_2}x} = 3\) bằng
Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là
Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là
Cho hàm số \(y = f(x)\) có bảng biến thiên như hình bên. Số nghiệm của phương trình \(3f(x) - 2 = 0\) là
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g\left( x \right) = f\left( {2\sin \,\dfrac{x}{2}\cos \dfrac{x}{2} + 3} \right)\) bằng
Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng
Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là
Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là
Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là
Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng?
Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng?
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau: Mệnh đề nào dưới đây sai?
Cho hình nón đỉnh \(S\) có bán kính đáy bằng \(a\sqrt 2 .\) Mặt phẳng \(\left( P \right)\) qua \(S\) cắt đường tròn đáy tại \(A,B\) sao cho \(AB = 2a.\) Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng \(\left( P \right)\) là \(\dfrac{{4a\sqrt {17} }}{{17}}.\) Thể tích khối nón bằng
Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng