Một cái phễu có dạng hình nón chiều cao của phễu là 30 cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của cột nước trong phễu bằng 15 cm (Hình \(H_1\)). Nếu bịt kín miệng phễu rồi lật ngược phễu lên (hình \(H_2\)) thì chiều cao của cột nước trong phễu gần bằng với giá trị nào sau đây?
A. 1,553 (cm).
B. 1,306 (cm).
C. 1,233 (cm).
D. 15 (cm).
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho dãy số \(({u_n}):\left\{ \begin{array}{l}
{u_1} = 5\\
{u_{n + 1}} = {u_n} + n
\end{array} \right.\) . Số 20 là số hạng thứ mấy trong dãy?
Trong mặt phẳng tọa độ Oxy cho bốn điểm \(A\left( {3; - 5} \right),B\left( { - 3;3} \right),C\left( { - 1; - 2} \right),D\left( {5; - 10} \right).\) Hỏi \(G\left( {\frac{1}{3}; - 3} \right)\) là trọng tâm của tam giác nào dưới đây?
Cho \({\log _{12}}3 = a\). Tính \({\log _{24}}18\) theo \(a\).
Cho tứ diện ABCD có \(AB = AC,DB = DC.\) Khẳng định nào sau đây là đúng?
Có bao nhiêu số tự nhiên có 3 chữ số \(\overline {abc} \) sao cho a, b, c là độ dài 3 cạnh của một tam giác cân.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân,\(BA{\rm{ }} = {\rm{ }}BC{\rm{ }} = a,\widehat {SAB} = \widehat {SCB} = 90^\circ ,\) biết khoảng cách từ A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\) . Góc giữa SC và mặt phẳng (ABC) là:
Tìm tập xác định của hàm số \(y = \frac{1}{{{{\log }_2}\left( {5 - x} \right)}}\)
Gọi d là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\). Mệnh đề nào dưới đây đúng?
Cho phương trình \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right).\) Tính tổng các nghiệm thuộc khoảng \(\left( {0;\pi } \right)\) của phương trình trên.
Hệ số của số hạng chứa \(x^6\) trong khai triển nhị thức \({\left( {\frac{3}{x} - \frac{x}{3}} \right)^{12}}\) (với \(x \ne 0\)) là:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?