Một cái phễu gồm một phần có dạng hình trụ, bán kính đáy bằng R và phần còn lại có dạng hình nón, chiều cao bằng 2R. Phễu chứa nước có mực nước đến sát đáy hình nón. Người ta thả vào một một vật hình cầu bằng kim loại vào thì nó đặt vừa khít trong hình nón (hình bên). Chiều cao cột nước dâng lên theo bằng
A. \(\frac{{32R}}{{3{{\left( {1 + \sqrt 5 } \right)}^3}}}\)
B. \(\frac{{8R}}{{3{{\left( {1 + \sqrt 5 } \right)}^3}}}\)
C. \(\frac{{16R}}{{3{{\left( {1 + \sqrt 5 } \right)}^3}}}\)
D. \(\frac{{4R}}{{3{{\left( {1 + \sqrt 5 } \right)}^3}}}\)
Lời giải của giáo viên
Áp dụng định lí Pytago ta tính được \(SA = SB = \sqrt {S{O^2} + O{A^2}} = \sqrt {4{R^2} + {R^2}} = R\sqrt 5 \).
Ta có \({S_{\Delta SAB}} = \frac{1}{2}SO.AB = \frac{1}{2}.2R.2R = 2{R^2}\)
Nửa chu vi tam giác ABC là \(p = \frac{{SA + SB + AB}}{2} = \frac{{R\sqrt 5 + R\sqrt 5 + 2R}}{2} = R\left( {\sqrt 5 + 1} \right)\)
Do khối cầu nằm vừa khít trong hình nón nên bán kính cầu chính bằng bán kính đường tròn nội tiếp tam giác SAB.
\( \Rightarrow r = \frac{{{S_{\Delta SAB}}}}{p} = \frac{{2{R^2}}}{{R\left( {\sqrt 5 + 1} \right)}} = \frac{{2R}}{{\sqrt 5 + 1}}\).
\( \Rightarrow\) Thể tích khối cầu là \(V = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi \frac{{8{R^3}}}{{{{\left( {\sqrt 5 + 1} \right)}^3}}}\)
Thể tích khối cầu chính bằng thể tích phần nước dâng lên trong hình trụ có bán kính đáy R.
Gọi h là chiều cao cột nước dâng lên ta có \(V = \pi {R^2}h = \frac{4}{3}\pi \frac{{8{R^3}}}{{{{\left( {\sqrt 5 + 1} \right)}^3}}} \Leftrightarrow h = \frac{{32R}}{{3{{\left( {\sqrt 5 + 1} \right)}^3}}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=a^x\) có đồ thị như hình bên. Giá trị của a là:
Giá trị của biểu thức \(A = \sum\limits_{k = 1}^{2019} {C_{2019}^k{{.9}^k}} \) bằng
Trong không gian tọa độ Oxyz, cho hình bình hành ABCD có \(A\left( {1;0;1} \right),B\left( { - 1;2;1} \right),C\left( {0; - 1;2} \right)\). Tọa độ của điểm D là
Cho tứ diện ABCD có \(AB = AC = AD = a,BAC = {60^0},CAD = {60^0},\) \(DAB = {90^0}\). Khoảng cách giữa hai đường thẳng AC và BD là
Cho hình nón có góc ở đỉnh bằng \(80^0\). Góc giữa đường thẳng chứa một đường sinh và mặt phẳng chứa đường tròn đáy bằng
Trong không gian tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 9\) và điểm M thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng OM là
Trong không gian tọa độ Oxyz, phương trình mặt cầu tâm I(2;- 3; - 4) bán kính 4 là
Cho \(a,b \in R,a < b\) và hàm số \(y=F(x)\) là một nguyên hàm của hàm số \(y=\sin x\). Khẳng định nào sau đây là đúng?
Cho hình chóp đều S.ABCD có tam giác SAC đều cạnh a. Thể tích của khối chóp S.ABCD là
Cho lăng trụ đứng ABC.A’B’C’ có AA’ = 3, tam giác A’BC có diện tích bằng 6 và mặt phẳng (A’BC) tạo với mặt đáy góc \(60^0\). Thể tích của khối lăng trụ đã cho là
Trong không gian tọa độ Oxyz, cho các điểm \(A\left( {3;4;0} \right),B\left( {3;0; - 4} \right),C\left( {0; - 3; - 4} \right)\). Trục của đường tròn ngoại tiếp tam giác ABC đi qua điểm nào trong các điểm sau đây?
Cho hàm số \(y=f(x)\) có đạo hàm là hàm liên tục trên R thỏa mãn \(\int\limits_0^2 {f'\left( x \right)dx = 45,f\left( 0 \right) = 3} \). Giá trị của biểu thức \(f(2)\) bằng
Giới hạn \(\mathop {\lim }\limits_{x \to - 1} \frac{{4x + 5}}{{7x + 8}}\) bằng
Một người gửi tiết kiệm 300 triệu với lãi suất 5% một năm và lãi hàng năm được nhập vào vốn. Sau ít nhất bao nhiêu năm người đó nhận được số tiền lớn hơn 450 triệu?
Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^{ - {x^2}}} > \frac{{81}}{{16}}\) là