Một hình trụ có đường kính đáy bằng chiều cao và độ dài đường sinh \(l = 6{\rm{ cm}}\). Diện tích toàn phần của hình trụ đó bằng
A. \(144\pi {\rm{ c}}{{\rm{m}}^2}\)
B. \(54\pi {\rm{ c}}{{\rm{m}}^2}\)
C. \(36\pi {\rm{ c}}{{\rm{m}}^2}\)
D. \(27\pi {\rm{ c}}{{\rm{m}}^2}\)
Lời giải của giáo viên
Hình trụ có chiều cao h=l, do đó bán kính \(r=h=3\text{ cm}\).
Vậy diện tích toàn phần của hình trụ bằng: \({{S}_{tp}}=2\pi rl+2\pi {{r}^{2}}=54\pi \text{ c}{{\text{m}}^{2}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, mặt cầu \(\left( S \right) :{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-2=0\) có tọa độ tâm I là
Cho hàm số \(y=g(x)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Cho hàm số \(f\left( x \right)=\frac{{{3}^{x}}}{{{3}^{x}}+{{m}^{2}}}\) với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho \(f\left( a \right)+f\left( b \right)=1\) với mọi số thực a, b thoả mãn \({{e}^{a+b}}\le e\left( a+b \right)\). Số các phần tử của S là
Tính thể tích của khối lăng trụ đứng \(ABCD.{A}'{B}'{C}'{D}'\) có đáy là hình vuông cạnh 5 và \(B{B}'=6\)
Tích phân \(\int_{ - 1}^3 {\left( {3{x^2} - 1} \right)} \;{\rm{d}}x\) bằng
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 2019 số nguyên x thỏa mãn bất phương trình \({{x}^{2}}-\left( y+3 \right)x+3y<\left( y-x \right){{\log }_{2}}x\)
Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} \right) < 0\) là
Trong không gian Oxyz, cho ba điểm \(A\left( -2;1;3 \right), B\left( 5;0;2 \right)\) và \(C\left( 0;2;4 \right)\). Trọng tâm của tam giác ABC có tọa độ là
Nghiệm của phương trình \({3^{{x^2} - 5x + 6}} = 1\) là:
Với a là số thực dương tùy ý, \({{a}^{2}}.{{a}^{3}}\) bằng
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( 1;0\,;\,-1 \right)\), đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}\) và mặt phẳng \(\left( P \right):4x+y+z+1=0\). Viết phương trình đường thẳng d đi qua M, cắt \(\Delta \) tại N, cắt \(\left( P \right)\) tại E sao cho M là trung điểm của NE.
Hàm số nào sau đây có chiều biến thiên khác với chiều biến thiên của các hàm số còn lại.
Một khối lăng trụ có diện tích đáy bằng 6 và chiều cao bằng 5. Thể tích của khối lăng trụ đó bằng
Tìm giá trị lớn nhất của hàm số \(f\left( x \right)=\frac{x}{x+2}\) trên đoạn \(\left[ 1;4 \right].\)
Cho z+5-7i=0, trên mặt phẳng tọa độ, điểm biểu diễn số phức z có tọa độ là