Câu hỏi Đáp án 2 năm trước 15

Một lớp có 36 chiếc ghế đơn được xếp thành hình vuông \(6\times 6.\) Giáo viên muốn xếp 36 học sinh của lớp, trong đó có em Kỷ và Hợi ngồi vào số ghế trên, mỗi học sinh ngồi một ghế. Xác suất để hai em Kỷ và Hợi ngồi cạnh nhau theo hàng dọc hoặc hàng ngang là

A. \(\frac{1}{21}\)

B. \(\frac{1}{7}\)

C. \(\frac{4}{21}\)

D. \(\frac{2}{21}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Xếp 36 em học sinh vào 36 ghế ⇒ Không gian mẫu \(n\left( \Omega  \right)=36!.\)

Gọi A là biến cố: “Hai em Kỷ và Hợi ngồi cạnh nhau theo một hàng ngang hoặc một hàng dọc”.

Chọn 1 hàng hoặc cột để xếp Kỷ và Hợi có 12 cách.

Trên mỗi hàng hoặc cột xếp 2 em Kỷ và Hợi gần nhau có 5.2 = 10 cách.

Sắp xếp 34 bạn còn lại có 34! cách.

\(\Rightarrow n\left( A \right)=12.10.34!.\)

Vậy xác suất của biến cố A là: \(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega  \right)}=\frac{12.10.34!}{36!}=\frac{2}{21}.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng

Xem lời giải » 2 năm trước 41
Câu 2: Trắc nghiệm

Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:

Xem lời giải » 2 năm trước 39
Câu 3: Trắc nghiệm

Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :

Xem lời giải » 2 năm trước 39
Câu 4: Trắc nghiệm

Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty  \right)\).

Xem lời giải » 2 năm trước 39
Câu 5: Trắc nghiệm

Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2

Xem lời giải » 2 năm trước 38
Câu 6: Trắc nghiệm

Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là

Xem lời giải » 2 năm trước 38
Câu 7: Trắc nghiệm

Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là

Xem lời giải » 2 năm trước 38
Câu 8: Trắc nghiệm

Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 37
Câu 10: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là

Xem lời giải » 2 năm trước 37
Câu 11: Trắc nghiệm

Trong không gian Oxyz, cho điểm \(M\left( 1;1;1 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) thỏa mãn OA=2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S=2a+b+3c.

Xem lời giải » 2 năm trước 36
Câu 12: Trắc nghiệm

Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=1+t \\ & y=-1-2t \\ & z=2+t \\ \end{align} \right.\), \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).

Xem lời giải » 2 năm trước 36
Câu 13: Trắc nghiệm

Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?

Xem lời giải » 2 năm trước 36
Câu 14: Trắc nghiệm

Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\left( {2017 + \sqrt {2019 – {x^2}} } \right)\) trên tập xác định của nó. Tính M – m.

Xem lời giải » 2 năm trước 36
Câu 15: Trắc nghiệm

Cho hình lăng trụ \(ABC.{A}'{B}'{C}'\) và M, N là hai điểm lần lượt trên cạnh CA, CB sao cho MN song song với AB và \(\frac{CM}{CA}=k\). Mặt phẳng \(\left( MN{B}'{A}' \right)\) chia khối lăng trụ \(ABC.{A}'{B}'{C}'\) thành hai phần có thể tích \({{V}_{1}}\) (phần chứa điểm C) và \({{V}_{2}}\) sao cho \(\frac{{{V}_{1}}}{{{V}_{2}}}=2\). Khi đó giá trị của k là

Xem lời giải » 2 năm trước 36

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »