Một người muốn làm cho con gái 1 chiếc lều từ vải và các ống nhựa PVC có dạng hình chóp tứ giác đều như hình vẽ.
Biết rằng nếu em bé đi dọc theo 1 cạnh của chiếc lều với vận tốc \(0,3\,\text{m/s}\) thì phải mất \(6\,\text{s}\), và góc giữa mỗi ống nhựa với mặt sàn nhà là \(60{}^\circ \). Hỏi người đó cần dùng hết ít nhất bao nhiêu mét vuông vải để may chiếc lều trên? (Chỉ dùng vải để may các mặt bên của chiếc lều)
A. \(9\,{{\rm{m}}^2}\)
B. \(8,5{\rm{ }}{{\rm{m}}^2}\)
C. \(8,6{\rm{ }}{{\rm{m}}^2}\)
D. \(9,2{\rm{ }}{{\rm{m}}^2}\)
Lời giải của giáo viên
Giả sử chiếc lều có dạng hình chóp đều S.ABCD như hình vẽ trên.
Ta có em bé đi dọc theo 1 cạnh của chiếc lều với vận tốc \(0,3\,\text{m/s}\) thì phải mất \(6\,\text{s}\), nên độ dài 1 cạnh đáy của chiếc lều là \(AB=0,3.6=1,8\,\text{m}\).
Gọi M là trung điểm của AB.
Ta có \(SB=\frac{OB}{\cos 60{}^\circ }=2OB=AB\sqrt{2} \Rightarrow SM=\sqrt{S{{B}^{2}}-B{{M}^{2}}}=\sqrt{2A{{B}^{2}}-\frac{A{{B}^{2}}}{4}}=\frac{\sqrt{7}}{2}AB\).
Khi đó diện tích vải cần dùng để may các mặt xung quanh chiếc lếu là:
\(S=4{{S}_{\Delta SAB}}=4.\frac{1}{2}.SM.AB= =1.\frac{1}{2}.\frac{\sqrt{7}}{2}AB.AB=\sqrt{7}.A{{B}^{2}} =\sqrt{7}.1,{{8}^{2}}\approx 8,6\,{{\text{m}}^{2}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, mặt cầu \(\left( S \right) :{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-2=0\) có tọa độ tâm I là
Cho hàm số \(y=g(x)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Cho hàm số \(f\left( x \right)=\frac{{{3}^{x}}}{{{3}^{x}}+{{m}^{2}}}\) với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho \(f\left( a \right)+f\left( b \right)=1\) với mọi số thực a, b thoả mãn \({{e}^{a+b}}\le e\left( a+b \right)\). Số các phần tử của S là
Tính thể tích của khối lăng trụ đứng \(ABCD.{A}'{B}'{C}'{D}'\) có đáy là hình vuông cạnh 5 và \(B{B}'=6\)
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 2019 số nguyên x thỏa mãn bất phương trình \({{x}^{2}}-\left( y+3 \right)x+3y<\left( y-x \right){{\log }_{2}}x\)
Tích phân \(\int_{ - 1}^3 {\left( {3{x^2} - 1} \right)} \;{\rm{d}}x\) bằng
Nghiệm của phương trình \({3^{{x^2} - 5x + 6}} = 1\) là:
Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} \right) < 0\) là
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( 1;0\,;\,-1 \right)\), đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}\) và mặt phẳng \(\left( P \right):4x+y+z+1=0\). Viết phương trình đường thẳng d đi qua M, cắt \(\Delta \) tại N, cắt \(\left( P \right)\) tại E sao cho M là trung điểm của NE.
Trong không gian Oxyz, cho ba điểm \(A\left( -2;1;3 \right), B\left( 5;0;2 \right)\) và \(C\left( 0;2;4 \right)\). Trọng tâm của tam giác ABC có tọa độ là
Hàm số nào sau đây có chiều biến thiên khác với chiều biến thiên của các hàm số còn lại.
Trong mặt phẳng tọa độ Oxy, số phức liên hợp của số phức \(z=\left( 1+2i \right)\left( 1-i \right)\) có điểm biểu diễn là điểm nào sau đây?
Cho tích phân \(\int\limits_{a}^{b}{f\left( x \right)}\,\text{d}x=2\) và \(\int\limits_{c}^{b}{f\left( x \right)}\,\text{d}x=3\) với a<b<c. Tính tích phân \(K=\int\limits_{a}^{c}{f\left( x \right)}\,\text{d}x\).
Tìm giá trị lớn nhất của hàm số \(f\left( x \right)=\frac{x}{x+2}\) trên đoạn \(\left[ 1;4 \right].\)
Trong không gian Oxyz, mặt phẳng \(\left( P \right):\,2x-3y+z-4=0\) không đi qua điểm nào dưới đây?