Một tổ có 7 học sinh nam và 5 học sinh nữ được xếp đứng ngẫu nhiên thành một hàng ngang để tham dự chào cờ. Tính xác suất để không có bất kỳ hai học sinh nữ nào xếp đứng cạnh nhau
A. \(\frac{1}{{132}}.\)
B. \(\frac{7}{{99}}.\)
C. \(\frac{7}{{264}}.\)
D. \(\frac{1}{{792}}.\)
Lời giải của giáo viên
Số cách sắp xếp 12 học sinh đứng thành hàng ngang là 12! (cách) Số phần tử không gian mẫu \(n\left( \Omega \right) = 12!\)
Gọi biến cố A: " Không có bất kỳ hai học sinh nữ nào đứng cạnh nhau"
Trước tiên ta sắp 7 học sinh nam đứng thành hàng ngang, có 7! (cách)
Khi xếp 7 học sinh nam tạo ra 8 khoảng trống (gồm 6 khoảng trống xen kẻ giữa 2 nam liên tiếp và 2 khoảng trống ở hai đầu) ta sắp xếp 5 học sinh nữ vào 5 trong 8 khoảng trống đó. Số cách sắp là \(A_8^5\) \( \Rightarrow n\left( A \right) = 7!A_8^5\)
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{7!A_8^5}}{{12!}} = \frac{7}{{99}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gía trị nguyên dương bé nhất của tham số m để đường thẳng y = mx - 9 cắt đồ thị hàm số \(y = {x^2} - x\) tại hai điểm phân biệt là
Tính thể tích của khối nón tròn xoay sinh ra khi cho tam giác đều ABC cạnh a quay quanh trục đối xứng của nó.
Xác định tham số thực m để phương trình \({{x}^{2}}+{{y}^{2}}-4x+4y+8-m=0\) có nghiệm duy nhất \(\left( x;y \right)\) thỏa mãn bất phương trình \(\log _{{{x}^{2}}+{{y}^{2}}+2}^{{}}\left( 2x+2y+4 \right)\ge 1\).
Cho \({\log _2}3 = a;{\log _2}5 = b.\) Tính \({\log _3}15\) theo a và b.
Trong không gian Oxyz, một véc tơ chỉ phương của đường thẳng có phương trình tham số \(\left\{ {\begin{array}{*{20}{c}} {x = 1 - 2t}\\ {y = 3}\\ {z = 5 + t} \end{array}} \right.\) là
Nguyên hàm của hàm số \(f\left( x \right) = {2^x}\) bằng
Tập nghiệm của bất phương trình \({\ln ^2}x - 3\ln x + 2 \le 0\) là
Trong không gian Oxyz, mặt cầu tâm \(I\left( 5;-1;3 \right)\) đi qua điểm \(A\left( 2;4;7 \right)\) có phương trình là
Cho hình nón có chiều cao bằng 2a. Thiết diện đi qua đỉnh của hình nón cách tâm đường tròn đáy của hình nón một khoảng bằng a là một tam giác đều. Tính thể tích của khối nón giới hạn bởi hình nón đã cho.
Có bao nhiêu giá trị nguyên của tham số thực m để phương trình \(4{{\cos }^{4}}x-8{{\cos }^{2}}x-m+1=0\) có 3 nghiệm thực phân biệt thuộc đoạn \(\left[ 0;\frac{3\pi }{2} \right]?\)
Khối hộp chữ nhật có độ dài ba kích thước lần lượt là 3(cm), 7(cm), 4(cm). Thể tích khối hộp đó bằng
Trong không gian Oxyz, đường thẳng đi qua điểm \(M\left( {2; - 3;1} \right)\) và vuông góc với mặt phẳng 3x - y + 4z - 2 = 0 có phương trình là
Tìm số phức z biết \(\left( {1 - 2i} \right)z - 6 + 2i = 0\).