Lời giải của giáo viên
Ta có \(y'\left( x \right) = \cos x - m\)
Đặt \(\cos x = t,t \in \left[ { - 1;1} \right] \Rightarrow y'\left( t \right) = t - m\). Yêu cầu bài toán \( \Leftrightarrow y'\left( x \right) \le 0,\forall x \in R \Leftrightarrow y'\left( t \right) \le 0,\forall t \in \left[ { - 1;1} \right]\)
\( \Leftrightarrow \left\{ \begin{array}{l}
y'\left( { - 1} \right) \le 0\\
y'\left( 1 \right) \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
- 1 - m \le 0\\
1 - m \le 0
\end{array} \right. \Leftrightarrow m \ge - 1\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) đồng biến trên R
Cho hàm số \(y = \frac{{{x^4}}}{4} + {x^3} - 4x + 1\). Nhận xét nào sau đây là sai:
Cho hàm số \(y = \frac{{{x^2} + x + 2}}{{x - 2m - 1}}\) có đồ thị (1). Tìm \(m\) để đồ thị (1) có đường tiệm cận đứng trùng với đường thẳng \(x=3\)
Tìm m để giá trị nhỏ nhất của hàm số \(y = {x^3} + \left( {{m^2} + 1} \right)x + {m^2} - 2\) trên \(\left[ {0;2} \right]\) bằng 7
Hàm số \(y = {\sin ^4}x - {\cos ^4}x\) có đạo hàm là:
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) nghịch biến trên khoảng có độ dài bằng 2.
Tìm điểm M thuộc đồ thị \(\left( C \right):y = {x^3} - 3{x^2} - 2\) biết hệ số góc của tiếp tuyến tại M bằng 9
Tìm m để hàm số \(y = {x^3} + 3{x^2} + 3mx - 1\) nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)
Tìm \(m\) để hàm số \(y = m{x^3} + 3{x^2} + 12x + 2\) đạt cực đại tại \(x=2\)
Gọi S là tập tất cả các giá trị thực của tham số \(m\) để đồ thị của hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 1} \right)x\) có hai điểm cực trị A và B sao cho A, B nằm khác phía và cách đều đường thẳng \(y = 5x - 9\). Tính tổng tất cả các phần tử của S.
Phương trình tiếp tuyến với đồ thị \(y = {x^3} - 4{x^2} + 2\) tại điểm có hoành độ bằng 1 là:
Điểm cực đại của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 2\) là:
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \frac{x}{{x - m}}\) nghịch biến trên nửa khoảng \(\left[ {1; + \infty } \right)\).
Tìm \(m\) để hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên từng khoảng xác định của chúng.
Khoảng đồng biến của hàm số \(y = - {x^4} + 8{x^2} - 1\) là: