Tìm tập S tất cả các giá trị thực của tham số m để tồn tại duy nhất cặp số (x;y) thỏa mãn \({\log _{{x^2} + {y^2} + 2}}\left( {4x + 4y - 6 + {m^2}} \right) \ge 1\) và \({x^2} + {y^2} + 2x - 4y + 1 = 0\).
A. \(S = \left\{ { - 5;5} \right\}.\)
B. \(S = \left\{ { - 7; - 5; - 1;1;5;7} \right\}.\)
C. \(S = \left\{ { - 5; - 1;1;5} \right\}.\)
D. \(S = \left\{ { - 1;1} \right\}.\)
Lời giải của giáo viên
\(\begin{array}{l}
{\log _{{x^2} + {y^2} + 2}}\left( {4x + 4y - 6 + {m^2}} \right) \ge 1 = {\log _{{x^2} + {y^2} + 2}}\left( {{x^2} + {y^2} + 2} \right)\\
\Leftrightarrow 4x + 4y - 6 + {m^2} \ge {x^2} + {y^2} + 2\,\,\left( {Do\,\,{x^2} + {y^2} + 2 > 1} \right)\\
\Leftrightarrow {x^2} + {y^2} - 4x - 4y - {m^2} + 8 \le 0\,\,\,\left( 1 \right)
\end{array}\)
Ta có \({a^2} + {b^2} - c = 4 + 4 + {m^2} - 8 = {m^2}\,\,\,\,\,\left( 2 \right)\)
TH1: \(m = 0 \Rightarrow \left( 1 \right):{x^2} + {y^2} - 4x - 4y + 8 = 0 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 0 \Leftrightarrow \left\{ \begin{array}{l}
x = 2\\
y = 2
\end{array} \right.\)
Cặp số \(\left( {x;y} \right) = \left( {2;2} \right)\) không thỏa mãn điều kiện (2).
TH2: \(m \ne 0 \Rightarrow {m^2} > 0 \Rightarrow \) Tập hợp các cặp số (x;y) thỏa mãn (1) là hình tròn \((C_1)\) (kể cả biên) tâm \(I_1(2;2)\) bán kính \(R_1=m\).
Tập hợp các cặp số (x;y) thỏa mãn (2) là đường tròn \((C_2)\) tâm \(I_2(-1;2)\) bán kính \({R_2} = \sqrt {1 + 4 - 1} = 2\).
Để tồn tại duy nhất cặp số (x;y) thỏa mãn 2 điều kiện (1) và (2) Xảy ra 2 trường hợp sau:
TH1: \((C_1), (C_2)\) tiếp xúc ngoài \( \Leftrightarrow {I_1}{I_2} = {R_1} + {R_2} \Leftrightarrow \sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {2 - 2} \right)}^2}} = m + 2\)
\( \Leftrightarrow 3 = m + 2 \Leftrightarrow m = 1\,\,\left( {tm} \right)\).
TH2: \((C_1), (C_2)\) tiếp xúc trong và \({R_1} < {R_2} \Leftrightarrow \left\{ \begin{array}{l}
{I_1}{I_2} = \left| {{R_1} - {R_2}} \right|\\
m < 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
3 = \left| {m - 2} \right|\\
m < 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
m = 5\\
m = - 1
\end{array} \right.\\
m < 2
\end{array} \right. \Leftrightarrow m = - 1\,\,\,\left( {tm} \right)\)
Vậy \(S = \left\{ { \pm 1} \right\}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x)\) liên tục trên đoạn [0;10] và \(\int_0^{10} {f\left( x \right)dx = 7} \) và \(\int_2^6 {f\left( x \right)dx = 3} \). Tính \(P = \int_0^2 {f\left( x \right)dx + \int_6^{10} {f\left( x \right)dx} } .\)
Có bao nhiêu số hạng trong khai triển nhị thức \({\left( {2x - 3} \right)^{2018}}\) thành đa thức
Cho hình chóp S.ABC có đáy \(\Delta ABC\) vuông cân ở B, \(AC = a\sqrt 2 ,SA \bot \left( {ABC} \right),SA = a\). Gọi G là trọng tâm của \(\Delta SBC\), mp \(\left( \alpha \right)\) đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V.
Cho \(\int {2x{{\left( {3x - 2} \right)}^6}dx = A{{\left( {3x - 2} \right)}^8} + B{{\left( {3x - 2} \right)}^7} + C} \) với \(A,B,C \in R\). Tính giá trị của biểu thức 12A + 7B.
Một người gửi tiết kiệm số tiền 80 000 000 đồng với lãi suất là 6,9%/năm. Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó có rút được cả gốc và lãi số tiền gần với con số nào dưới đây?
Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{x - 1}}{{4\sqrt {3x + 1} - 3x - 5}}\).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(A,AB = 1cm,AC = \sqrt 3 cm\). Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng \(\frac{{5\sqrt 5 }}{6}c{m^3}\). Tính khoảng cách từ C tới (SAB).
Tìm tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) có nghiệm.
Có bao nhiêu số tự nhiên có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{1 + {a^2}}}} \right)^{2x + 1}} > 1\) (với a là tham số, \(a \ne 0\)) là
Biết F(x) là nguyên hàm của hàm số \(1f\left( x \right) = \frac{{x - \cos x}}{{{x^2}}}\). Hỏi đồ thị của hàm số \(y=F(x)\) có bao nhiêu điểm cực trị?
Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng \(\overline {abcd} \), trong đó \(1 \le a \le b \le c \le d \le 9\).
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng
Cho hình trụ có thiết diện đi qua trục là một hình vuông có cạnh bằng 4a. Diện tích xung quanh của hình trụ là
Có bao nhiêu giá trị nguyên của tham số m trên đoạn \(\left[ { - 2018;2018} \right]\) để hàm số \(y = \ln \left( {{x^2} - 2x - m + 1} \right)\) có tập xác định R.