Lời giải của giáo viên
Kiến thức cần nhớ: Cho hàm số \(y=f\left( x \right)\) có đạo hàm cấp một trên \(\left( a;\,b \right)\) chứa điểm \({{x}_{0}}\) và\(y=f\left( x \right)\) có đạo hàm cấp hai khác \(0\) tại \({{x}_{0}}\), khi đó:
+ Nếu \(\left\{ \begin{align} & f'\left( {{x}_{0}} \right)=0 \\ & f''\left( {{x}_{0}} \right)>0 \\ \end{align} \right.\) thì hàm số \(y=f\left( x \right)\) đạt cực tiểu tại điểm \({{x}_{0}}\).
+ Nếu \(\left\{ \begin{align} & f'\left( {{x}_{0}} \right)=0 \\ & f''\left( {{x}_{0}} \right)<0 \\ \end{align} \right.\) thì hàm số \(y=f\left( x \right)\) đạt cực đại tại điểm \({{x}_{0}}\).
Áp dụng ta có\(y'=3{{x}^{2}}+2\left( 3m-1 \right)x+{{m}^{2}};\,\,y''=6x+2\left( 3m-1 \right)\).
Xét phương trình \(y'\left( -1 \right)=0\Leftrightarrow 3{{\left( -1 \right)}^{2}}-2\left( 3m-1 \right)+{{m}^{2}}=0\Leftrightarrow {{m}^{2}}-6m+5=0\Leftrightarrow \left[ \begin{align} & m=1 \\ & m=5 \\ \end{align} \right.\)
Với \(m=1\Rightarrow y''=6x+4\Rightarrow y''\left( -1 \right)=-2<0\) nên hàm số đạt cực đại tại \(x=-1.\)
Với \(m=5\Rightarrow y''=6x+28\Rightarrow y''\left( -1 \right)=22>0\) nên hàm số đạt cực tiểu tại \(x=-1.\)
Vậy \(m=5\) thỏa mãn yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng
Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty \right)\).
Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :
Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:
Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của số phức z1 + z2
Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:
Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018<0. Số điểm cực trị của hàm số \(y=\left| f(x)-2019 \right|\) là
Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là
Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right)+1=0\) là
Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng \({{d}_{1}}:\left\{ \begin{align} & x=1+t \\ & y=-1-2t \\ & z=2+t \\ \end{align} \right.\), \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).
Trong không gian Oxyz, cho điểm \(M\left( 1;1;1 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) thỏa mãn OA=2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S=2a+b+3c.
Cho hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x}=-4\). Giá trị của \(\int\limits_{1}^{5}{\left[ g\left( x \right)-f\left( x \right) \right]\text{d}x}\) là
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\left( {2017 + \sqrt {2019 – {x^2}} } \right)\) trên tập xác định của nó. Tính M – m.