Lời giải của giáo viên
Loại phương án B vì hàm số có TXĐ là \(\mathbb{R}\backslash \left\{ 1 \right\}\)
Xét phương án A:
Ta có: \({y}'=-3{{x}^{2}}+6x\); \(y'=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=2 \\ \end{align} \right.\) nên hàm số nghịch biến trên các khoảng \(\left( -\infty ;0 \right),\left( 0;+\infty\right)\). Do đó loại phương án A.
Xét phương án C:
Ta có: \({y}'=-4{{x}^{3}}+2x\); \(y'=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=\pm \frac{\sqrt{2}}{2} \\ \end{align} \right.\) nên hàm số nghịch biến trên các khoảng \(\left( -\frac{\sqrt{2}}{2};0 \right),\left( \frac{\sqrt{2}}{2};+\infty \right)\). Do đó loại phương án C.
Xét phương án D:
Ta có: \({y}'=-6{{x}^{2}}+2x-1<0\,\,\forall x\in \mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\). Do đó chọn phương án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho điểm \(A(1\,;\,-1\,;\,3)\) và hai đường thẳng \({{d}_{1}}:\frac{x-4}{1}=\frac{y+2}{4}=\frac{z-1}{-2}, {{d}_{2}}:\frac{x-2}{1}=\frac{y+1}{-1}=\frac{z-1}{1}\). Viết phương trình đường thẳng d đi qua A,vuông góc với đường thẳng \({{d}_{1}}\) và cắt đường thẳng \({{d}_{2}}\).
Cho hàm số \(f\left( x \right)\) bảng xét dấu của \(f'\left( x \right)\) như sau:
Số điểm cực trị của hàm số đã cho là
Với a là số thực dương tùy ý, \(\sqrt[3]{{{a}^{4}}}\) bằng:
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=5\) và \({{u}_{2}}=8\). Giá trị của \({{u}_{3}}\) bằng
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\).
Một khối chóp có thể tích là \(36{{a}^{3}}\) và diện tích mặt đáy là \(9{{a}^{2}}\). Chiều cao của khối chóp đó bằng
Cho hàm số \(f\left( x \right)=4{{x}^{3}}+{{e}^{x}}-1\). Trong các khẳng định sau, khẳng định nào đúng
Cho hàm số \(f\left( x \right)\), đồ thị của hàm số \(y=f'\left( x \right)\) là đường cong trong hình bên. Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( x+2 \right)-x\) trên đoạn \(\left[ -3\,;\,0 \right]\) bằng
Một hình nón có đường kính đáy là 6cm, độ dài đường sinh là 3cm. Diện tích xung quanh của hình nón đó bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có \(f\left( 0 \right)=1\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình vẽ.
Hàm số \(y=\left| f\left( 3x \right)-9{{x}^{3}}-1 \right|\) đồng biến trên khoảng
Cho hình hộp chữ nhật \(ABCD{A}'{B}'{C}'{D}'\) có \(AB=3a\,;\,A{A}'=4a\) (như hình vẽ). Tính khoảng cách từ điểm B đến mặt phẳng \(\left( AD{C}'{B}' \right)\).
Trong không gian Oxyz, cho mặt cầu có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-1=0\). Bán kính của mặt cầu là
Công thức tính thể tích khối trụ có chiều cao h và bán kính đáy r là:
Có bao nhiêu số phức z thỏa mãn điều kiện \(\left| z-3i \right|=5\) và \(\frac{z}{z-4}\) là số thuần ảo?