Trong không gian \(Oxyz\) cho \(A\left( {1;0;0} \right),\,\,B\left( {0;2;0} \right),\,\,C\left( {0;0;1} \right)\). Trực tâm của tam giác \(ABC\) có tạo độ là:
A. \(\left( {\dfrac{4}{9};\dfrac{2}{9};\dfrac{4}{9}} \right)\)
B. \(\left( {2;1;2} \right)\)
C. \(\left( {4;2;4} \right)\)
D. \(\left( {\dfrac{2}{9};\dfrac{1}{9};\dfrac{2}{9}} \right)\)
Lời giải của giáo viên
Phương trình \(mp\left( {ABC} \right):\,\,\dfrac{x}{1} + \dfrac{y}{2} + \dfrac{z}{1} = 1 \Leftrightarrow 2x + y + 2z - 2 = 0\).
Gọi \(H\left( {a;b;c} \right)\) là trực tâm tam giác \(ABC\) ta có \(\overrightarrow {AH} = \left( {a - 1;b;c} \right),\,\,\overrightarrow {BH} = \left( {a;b - 2;c} \right)\)
\(\overrightarrow {BC} = \left( {0; - 2;1} \right);\,\,\overrightarrow {AC} = \left( { - 1;0;1} \right)\)
Vì \(H\) là trực tâm \(\Delta ABC \Rightarrow \left\{ \begin{array}{l}H \in \left( {ABC} \right)\\\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2a + b + 2c - 2 = 0\\ - 2b + c = 0\\ - a + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{4}{9}\\b = \dfrac{2}{9}\\c = \dfrac{4}{9}\end{array} \right. \Rightarrow H\left( {\dfrac{4}{9};\dfrac{2}{9};\dfrac{4}{9}} \right)\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là:
Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng:
Cho hình chóp \(S.\,ABC\) có \(SA\) vuông góc với đáy. Tam giác \(ABC\) vuông cân tại \(B\), biết \(SA = AC = 2a\). Thể tích khối chóp \(S.ABC\) là
Cho khối nón có độ dài đường sinh bằng \(2a\), góc giữa đường sinh và đáy bằng \({60^0}\). Thể tích của khối nón đã cho là:
Trong không gian \(Oxyz\) cho \(A\left( {0;1;2} \right),\,\,B\left( {0;1;0} \right),\,\,C\left( {3;1;1} \right)\) và mặt phẳng \(\left( Q \right):\,\,x + y + z - 5 = 0\). Xét điểm \(M\) thay đổi thuộc \(\left( Q \right)\). Giá trị nhỏ nhất của biểu thức \(M{A^2} + M{B^2} + M{C^2}\) bằng:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là:
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là:
Cho \(\int\limits_0^1 {\dfrac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}}} = a + b\ln 2 + c\ln 3\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a + b + c\) bằng:
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng \(\left( Q \right)\) với \(\left( Q \right)\) song song với \(\left( P \right)\) và khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng \(\dfrac{7}{3}\) là:
Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\).
Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng \(a\).
Trong không gian \(Oxyz\), mặt phẳng \(\left( {Oxy} \right)\) có phương trình là:
Trong không gian Oxyz, đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{z}{3}\) đi qua điểm nào dưới đây:
Tập nghiệm của bất phương trình \({\left( {\dfrac{1}{3}} \right)^{{x^2} + 2x}} > \dfrac{1}{{27}}\) là: