Trong không gian Oxyz cho đường thẳng \(d:\frac{x-3}{2}=\frac{y-2}{3}=\frac{z}{6}\) và mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=9.\) Biết đường thẳng d cắt mặt cầu \(\left( S \right)\) theo dây cung AB. Độ dài AB là
A. \(2\sqrt 5 \)
B. \(4\sqrt 2 \)
C. \(2\sqrt 3 \)
D. 4
Lời giải của giáo viên
Gọi H là trung điểm của AB. Khi đó
\(AB=2\sqrt{I{{B}^{2}}-I{{H}^{2}}}=2\sqrt{{{R}^{2}}-{{d}^{2}}\left( I;d \right)}\)
d đi qua điểm \(M\left( 3;2;0 \right)\) và \(\overrightarrow{{{u}_{d}}}=\left( 2;3;6 \right).\)
Vậy \(d\left( I;d \right)=\frac{\left| \left[ \overrightarrow{IM};\overrightarrow{{{u}_{d}}} \right] \right|}{\left| \overrightarrow{{{u}_{d}}} \right|}\)
Ta có \(\overrightarrow{IM}=\left( 2;1;0 \right)\Rightarrow \left[ \overrightarrow{IM};\overrightarrow{{{u}_{d}}} \right]=\left( 6;-12;4 \right).\)
Vậy \(\left| \left[ \overrightarrow{IM};\overrightarrow{{{u}_{d}}} \right] \right|=14.\)
Mà \(\left| \overrightarrow{{{u}_{d}}} \right|=\sqrt{{{2}^{2}}+{{3}^{2}}+{{6}^{2}}}=7\Rightarrow d\left( I,d \right)=2.\)
Vậy \(AB=2\sqrt{{{3}^{2}}-{{2}^{2}}}=2\sqrt{5}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tích phân \(I=\int\limits_{0}^{\frac{\pi }{3}}{\sin xdx}\) bằng
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC=a. Dựng đoạn thẳng SH vuông góc với mặt phẳng \(\left( ABC \right)\) với SH=2a. Khoảng cách từ điểm C đến mặt phẳng \(\left( SAB \right)\) là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-4z=0.\) Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) tại điểm \(A\left( 3;4;3 \right).\)
Có bao nhiêu số thực a để \(\int\limits_{0}^{1}{\frac{x}{a+{{x}^{2}}}dx}=1?\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy và \(SA=a\sqrt{2}.\) Tìm số đo của góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\).
Phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-2x}{-x+2}\) lần lượt là
Cho hàm số \(y=f\left( x \right)\). Đồ thị hàm số \(y=f'\left( x \right)\) như hình bên. Tìm số điểm cực trị của hàm số \(g\left( x \right)=f\left( {{x}^{2}}-3 \right).\)
Tìm tập hợp tất cả các giá trị thực của tham số $m$ để bất phương trình \({{\log }_{4}}\left( {{x}^{2}}-x-m \right)\ge {{\log }_{2}}\left( x+2 \right)\) có nghiệm.
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác vuông tại \(A,AB=a,AC=a\sqrt{2}.\) Biết góc giữa hai mặt phẳng \(\left( AB'C' \right)\) và \(\left( ABC \right)\) bằng \({{60}^{0}}\) và hình chiếu của A lên \(\left( A'B'C' \right)\) là trung điểm H của đoạn thẳng A'B'. Tính bán kính mặt cầu ngoại tiếp tứ diện A.HB'C' theo a.
Nghiệm của phương trình \({{\log }_{2}}\left( 3x-8 \right)=2\) là
Cho số phức \(z=2-3i.\) Số phức liên hợp của \(z\) là
Tọa độ giao điểm M của đồ thị hàm số \(y={{x}^{3}}+3x-4\) và đường thẳng y=2x-4.