Câu hỏi Đáp án 2 năm trước 34

Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2}=\frac{y-3}{1}=\frac{z-2}{-3}\) và mặt phẳng \(\left( P \right):x-y+2z-6=0\). Đường thẳng nằm trong \(\left( P \right)\) cắt và vuông góc với d có phương trình là?

A. \(\frac{{x + 2}}{1} = \frac{{y - 2}}{7} = \frac{{z - 5}}{3}.\)

Đáp án chính xác ✅

B. \(\frac{{x - 2}}{1} = \frac{{y - 4}}{7} = \frac{{z + 1}}{3}.\)

C. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{7} = \frac{{z - 1}}{3}.\)

D. \(\frac{{x - 2}}{1} = \frac{{y + 2}}{7} = \frac{{z + 5}}{3}.\)

Lời giải của giáo viên

verified HocOn247.com

\(\overrightarrow{{{n}_{P}}}=\left( 1;-1;2 \right), \,\overrightarrow{{{u}_{d}}}=\left( 2;1;-3 \right)\), Gọi \(I=d\cap \left( P \right), I\in d\Rightarrow I\left( 2t;3+t;2-3t \right)\)

\(I\in \left( P \right) \Rightarrow 2t-\left( 3+t \right)+2\left( 2-3t \right)-6=0 \Leftrightarrow t=-1 \Rightarrow I\left( -2;2;5 \right)\)

Gọi \(\Delta \) là đường thẳng cần tìm.

Theo giả thiết \(\left\{ \begin{array}{l} \overrightarrow {{u_\Delta }} \bot \overrightarrow {{u_d}} \\ \overrightarrow {{u_\Delta }} \bot \overrightarrow {{n_P}} \end{array} \right.\) \( \Rightarrow \overrightarrow {{u_\Delta }}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {1;7;3} \right)\)

Và đường thẳng \(\Delta \) đi qua điểm I. Vậy \(\Delta :\frac{x+2}{1}=\frac{y-2}{7}=\frac{z-5}{3}.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, điểm \(M\left( 3;4;-2 \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?

Xem lời giải » 2 năm trước 48
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( {{S}_{m}} \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-m \right)}^{2}}=\frac{{{m}^{2}}}{4}\) và hai điểm \(A\left( 2;3;5 \right), B\left( 1;2;4 \right)\). Tìm giá trị nhỏ nhất của m để trên \(\left( {{S}_{m}} \right)\) tồn tại điểm M sao cho \(M{{A}^{2}}-M{{B}^{2}}=9\).

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA=2a. Tính theo a thể tích khối chóp S.ABCD.

Xem lời giải » 2 năm trước 46
Câu 4: Trắc nghiệm

Đạo hàm của hàm số \(f\left( x \right)={{6}^{1-3x}}\) là:

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau

Hỏi đồ thị hàm số \(g\left( x \right)=\left| f\left( x-2018 \right)+2019 \right|\) có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Từ một hộp đựng 5 quả cầu màu đỏ, 8 quả cầu màu xanh và 7 quả cầu màu trắng, chọn ngẫu nhiên 4 quả cầu. Tính xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ.

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Đường cong hình bên là đồ thị của hàm số nào trong bốn hàm số ở phương án A, B, C, D dưới đây?

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Cho hàm số \(y=a{{x}^{3}}+b{{x}^{2}}+cx+d\,\left( a\,,\,b\,,\,c\,,\,d\in \mathbb{R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Cho hình hộp \(ABCD.{A}'{B}'{C}'{D}'\) có đáy ABCD là hình chữ nhật với AB=a, \(AD=a\sqrt{3}\). Hình chiếu vuông góc của \({A}'\) lên \(\left( ABCD \right)\) trùng với giao điểm của AC và BD. Khoảng cách từ \({B}'\) đến mặt phẳng \(\left( {A}'BD \right)\) là

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Tọa độ giao điểm của đồ thị hàm số \(y=\frac{2x-3}{1-x}\) với trục tung là

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Cho \({{\log }_{5}}7=a\) và \({{\log }_{5}}4=b.\) Biểu diễn \({{\log }_{5}}560\) dưới dạng \({{\log }_{5}}560=m.a+n.b+p,\) với \(m,\,\,n,\,\,p\) là các số nguyên. Tính S=m+n.p.

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Cho hàm số y=f(x) liên tục trên đoạn \(\left[ -2;6 \right]\), có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(f\left( x \right)\) trên miền \(\left[ -2;6 \right]\). Tính giá trị của biểu thức T=2M+3m.

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Cho hàm số \(f\left( x \right)\). Biết \(f\left( 0 \right)=4\) và \({f}'\left( x \right)=2{{\sin }^{2}}x+1,\text{ }\forall x\in \mathbb{R}\), khi đó \(\int\limits_{0}^{\frac{\pi }{4}}{f\left( x \right)\text{d}x}\) bằng

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Hàm số \(y=\frac{x+1}{x-1}\) nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{4}{f\left( x \right)d\text{x}}=10,\,\,\int\limits_{3}^{4}{f\left( x \right)d\text{x}}=4\). Tích phân \(\int\limits_{0}^{3}{f\left( x \right)d\text{x}}\) bằng

Xem lời giải » 2 năm trước 37

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »