Trong không gian \(Oxyz\) , cho mặt phẳng \(\left( P \right):\,\,x + y + z - 3 = 0\) và đường thẳng \(d:\,\,\dfrac{x}{1} = \dfrac{{y + 1}}{2} = \dfrac{{z - 2}}{{ - 1}}\). Đường thẳng \(d'\) đối xứng với \(d\) qua mặt phẳng \(\left( P \right)\) có phương trình là:
A. \(\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z - 1}}{7}\)
B. \(\dfrac{{x + 1}}{1} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z + 1}}{7}\)
C. \(\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z - 1}}{7}\)
D. \(\dfrac{{x + 1}}{1} = \dfrac{{y + 1}}{2} = \dfrac{{z + 1}}{7}\)
Lời giải của giáo viên
Gọi \(I = d \cap \left( P \right) \Rightarrow I\left( {t;2t - 1; - t + 2} \right)\)
\(I \in \left( P \right) \Rightarrow t + 2t - 1 - t + 2 - 3 = 0 \Leftrightarrow t = 1 \Rightarrow I\left( {1;1;1} \right)\)
Lấy \(A\left( {0; - 1;2} \right) \in \left( d \right)\). Gọi \(A'\) là điểm đối xứng với \(A\) qua \(\left( P \right)\) .
Gọi \(\left( \Delta \right)\) là đường thẳng qua \(A\) và vuông góc với \(\left( P \right) \Rightarrow \left( \Delta \right):\,\,\left\{ \begin{array}{l}x = t\\y = - 1 + t\\z = 2 + t\end{array} \right.\).
Gọi \(H = \left( \Delta \right) \cap \left( P \right) \Rightarrow H\left( {t; - 1 + t;2 + t} \right) \in \left( P \right)\)
\( \Rightarrow t - 1 + t + 2 + t - 3 = 0 \Leftrightarrow t = \dfrac{2}{3} \Rightarrow H\left( {\dfrac{2}{3}; - \dfrac{1}{3};\dfrac{8}{3}} \right)\).
Do A’ đối xứng A qua (P) nên \(H\) là trung điểm của \(AA' \Rightarrow A'\left( {\dfrac{4}{3};\dfrac{1}{3};\dfrac{{10}}{3}} \right)\).
\(d'\) đối xứng \(d\) qua \(\left( P \right) \Rightarrow d'\) đi qua \(I,\,\,A'\).
Ta có : \(\overrightarrow {IA'} = \left( {\dfrac{1}{3};\dfrac{{ - 2}}{3};\dfrac{7}{3}} \right)//\left( {1; - 2;7} \right)\) là 1 VTCP của \(d'\)
\( \Rightarrow \) Phương trình đường thẳng \(d'\) : \(\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z - 1}}{7}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là:
Cho hàm số có đồ thị như hình vẽ. Giá trị cực đại của hàm số bằng:
Cho hình chóp \(S.\,ABC\) có \(SA\) vuông góc với đáy. Tam giác \(ABC\) vuông cân tại \(B\), biết \(SA = AC = 2a\). Thể tích khối chóp \(S.ABC\) là
Cho khối nón có độ dài đường sinh bằng \(2a\), góc giữa đường sinh và đáy bằng \({60^0}\). Thể tích của khối nón đã cho là:
Trong không gian \(Oxyz\) cho \(A\left( {0;1;2} \right),\,\,B\left( {0;1;0} \right),\,\,C\left( {3;1;1} \right)\) và mặt phẳng \(\left( Q \right):\,\,x + y + z - 5 = 0\). Xét điểm \(M\) thay đổi thuộc \(\left( Q \right)\). Giá trị nhỏ nhất của biểu thức \(M{A^2} + M{B^2} + M{C^2}\) bằng:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là:
Họ nguyên hàm của hàm số \(f\left( x \right) = \sin x + x\ln x\) là:
Cho \(\int\limits_0^1 {\dfrac{{xdx}}{{{{\left( {2x + 1} \right)}^2}}}} = a + b\ln 2 + c\ln 3\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a + b + c\) bằng:
Tìm hệ số của đơn thức \({a^3}{b^2}\) trong khai triển của nhị thức \({\left( {a + 2b} \right)^5}\).
Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng \(a\).
Trong không gian \(Oxyz\), mặt phẳng \(\left( {Oxy} \right)\) có phương trình là:
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y + 2z - 10 = 0\). Phương trình mặt phẳng \(\left( Q \right)\) với \(\left( Q \right)\) song song với \(\left( P \right)\) và khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) bằng \(\dfrac{7}{3}\) là:
Trong không gian Oxyz, đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{z}{3}\) đi qua điểm nào dưới đây:
Đặt \({\log _5}3 = a\), khi đó \({\log _{81}}75\) bằng:
Tập nghiệm của bất phương trình \({\left( {\dfrac{1}{3}} \right)^{{x^2} + 2x}} > \dfrac{1}{{27}}\) là: