Trong không gian Oxyz, đường thẳng \(d:\left\{ \begin{array}{l}
x = 1 + 2t\\
y = 3 - t\\
z = 1 - t
\end{array} \right.\) đi qua điểm nào dưới đây ?
A. \(M\left( {1;3; - 1} \right)\)
B. \(M\left( { - 3;5;3} \right)\)
C. \(M\left( {3;5;3} \right)\)
D. \(M\left( {1;2; - 3} \right)\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x - {m^3} - m\), với m là tham số. Gọi A, B là hai điểm cực trị của đồ thị hàm số và I(2;- 2). Giá trị thực m < 1 để ba điểm I, A, B tạo thành tam giác nội tiếp đường tròn có bán kính bằng \(\sqrt 5 \) là
Gọi S là diện tích của hình phẳng giới hạn bởi các đường \(y = {3^x},y = 0,x = 0,x = 2\). Mệnh đề nào dưới đây đúng ?
Cho khối lăng trụ ABC.A'B'C' tam giác A'BC có diện tích bằng 1 và khoảng cách từ A đến mặt phẳng (A'BC) bằng 2. Thể tích khối lăng trụ đã cho bằng
Cho hàm số \(y=f(x)\) liên tục trên \(\left[ {\frac{1}{3}\,;\,3} \right]\) thỏa mãn \(f(x) + x.f\left( {\frac{1}{x}} \right) = {x^3} - x\). Giá trị tích phân \(I = \int\limits_{\frac{1}{3}}^3 {\frac{{f(x)}}{{{x^2} + x}}} \,dx\) bằng
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc tọa độ O, các đỉnh B(a;0;0), D(0;a;0), A'(0;0;b) với a, b > 0 và a + b = 2. Gọi M là trung điểm của cạnh CC'.Thể tích của khối tứ diện BDA'M có giá trị lớn nhất bằng
Cho hàm số \(f(x)\) có \(f'\left( x \right) = \left( {x + 1} \right)\left( {x + 2} \right){\left( {x - 1} \right)^2}\), \(\forall x \in R\) . Số cực trị của hàm số đã cho là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và \(SA = a\sqrt 3 \). Gọi a là góc giữa SD và mặt phẳng (SAC). Giá trị \(\sin \alpha \) bằng
Trong không gian Oxyz, cho điểm A(1;1;-1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây ?
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} + 3\) trên đoạn [1;3]. Giá trị \(T = 2M + m\) bằng
Cho hàm số \(y = \frac{1}{{x + 1 + \ln x}}\) với x > 0. Khi đó \( - \frac{{y'}}{{{y^2}}}\) bằng
Trong không gian Oxyz, cho 3 điểm \(A\left( {1;0;0} \right),{\rm{ }}B\left( {0;\,b;\,0} \right)\,,{\rm{ }}C\left( {0;\,0;\,c} \right)\) trong đó \(b.c \ne 0\) và mặt phẳng \(\left( P \right):y - z + 1 = 0\) .Mối liên hệ giữa \(b, c\) để mặt phẳng (ABC) vuông góc với mặt phẳng (P) là
Biết rằng đồ thị hàm số \(y = {x^4} - 2a{x^2} + b\) có một điểm cực trị là (1;2). Khi đó khoảng cách giữa điểm cực đại và điểm cực tiểu của đồ thị hàm số đã cho bằng
Cho hai số thực dương \(a\) và \(b\) thỏa mãn \({4^{ab}}{.2^{a + b}} = \frac{{8(1 - ab)}}{{a + b}}\). Giá trị lớn nhất của biểu thức \(P = ab + 2a{b^2}\) bằng
Cho hàm số \(y=f(x)\) có đạo hàm, liên tục trên R, nhận giá trị dương trên khoảng \(\left( {0\,;\, + \infty } \right)\) và thỏa mãn \(f(1)=1, f'(x) = f(x).(3{x^2} + 2mx + m)\) với m là tham số. Giá trị thực của tham số m để \(f(3) = {e^{ - 4}}\) là