Với hàm số f(x) tùy ý liên tục trên R , a < b, diện tích của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và các đường thẳng x = a, x = b được xác định theo công thức
A. \(S = \int\limits_a^b {\left| {f(x)} \right|} dx\)
B. \(S = \pi \int\limits_a^b {\left| {f(x)} \right|} dx\)
C. \(S = \left| {\int\limits_a^b {f(x)} dx} \right|\)
D. \(S = \left| {\pi \int\limits_a^b {f(x)} dx} \right|\)
Lời giải của giáo viên
Công thức tính diện tích hình phẳng được giới hạn bởi các đường thẳng \(y = 0,x = a,x = b(a < b)\) và đồ thị hàm số là: \(S = \int\limits_a^b {\left| {f(x)} \right|dx} \)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, gọi d là đường thẳng qua A(1;0;2) cắt và vuông góc với đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 5}}{{ - 2}}\). Điểm nào dưới đây thuộc d?
Giá trị lớn nhất của hàm số \(f(x) = \frac{{{x^2} - 8x}}{{x + 1}}\) trên đoạn [1; 3] bằng
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng xét dấu như sau:
Cho hàm số y = f(x) có bảng biến thiên
Số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là
Họ nguyên hàm của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 3x + 2}}\) là
Cho hình trụ (T) có chiều cao bằng 2a. Hai đường tròn đáy của (T) có tâm lần lượt là O và O1 và bán kính bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy O1 lấy điểm B sao cho \(AB = \sqrt 5 a\). Thể tích khối tứ diện bằng:
Gieo con xúc xắc được chế tạo cân đối và đồng chất 2 lần. Gọi a là số chấm xuất hiện trong lần gieo thứ nhất, b là số chấm xuất hiện trong lần gieo thứ hai. Xác suất để phương trình \({x^2} + ax + b = 0\) có nghiệm bằng
Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 2a và chiều cao bằng . Khoảng cách từ A đến mặt phẳng (SCD) bằng:
Cho khối chóp S.ABCD có đáy ABCD là hình thoi tâm O, \(AB = a,\angle BAD = {60^ \circ },SO \bot (ABCD)\) và mặt phẳng (SCD) tạo với mặt đáy một góc bằng 600 . Thể tích khối chóp đã cho bằng:
Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là:
Cho hàm số có bảng biến thiên
Hàm số đã cho đồng biến trên khoảng
Trong không gian Oxyz, vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P): 2y - 3z + 1 = 0?
Cho số thực \(\alpha \) sao cho phương trình \({2^x} - {2^{ - x}} = 2cos(\alpha x)\) có đúng 2019 nghiệm thực. Số nghiệm của phương trình \({2^x} + {2^{ - x}} = 4 + 2cos(\alpha x)\) là:
Cho hàm số y = f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình 2|f(x)| - 5 = 0 là