Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Cần Thạnh
Đề thi thử THPT QG năm 2022 môn Toán
-
Hocon247
-
50 câu hỏi
-
90 phút
-
52 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Hãy tìm \(\int {\dfrac{{5x + 1}}{{{x^2} - 6x + 9}}\,dx} \).
Ta có: \(\int {\dfrac{{5x + 1}}{{{x^2} - 6x + 9}}\,dx} \)
\(= \int {\dfrac{{5\left( {x - 3} \right) + 16}}{{{{\left( {x - 3} \right)}^2}}}} \,dx \)
\(= \int {\left( {\dfrac{5}{{x - 3}} + \dfrac{{16}}{{{{\left( {x - 3} \right)}^2}}}} \right)} \,d\left( {x - 3} \right)\)
\( = 5\ln \left| {x - 3} \right| - \dfrac{{16}}{{\left( {x - 3} \right)}} + C\)
Chọn đáp án D.
Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = \tan x,\,\,y = 0,\,\,x = \dfrac{\pi }{3}\) quanh Ox là:
Thể tích khối tròn xoay được xác định bởi công thức:
\(V = \pi \int\limits_0^{\dfrac{\pi }{3}} {{{\tan }^2}x\,dx} \)
\(\;\;\;= \pi \int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{1}{{{{\cos }^2}x}} - 1} \right)\,dx} \)
\(\;\;\;= \pi \left( {\tan x - x} \right)\left| \begin{array}{l}^{\dfrac{\pi }{3}}\\_0\end{array} \right. \)
\(\;\;\;= \pi \left( {\sqrt 3 - \dfrac{\pi }{3}} \right) = \pi \sqrt 3 - \dfrac{{{\pi ^2}}}{3}\)
Chọn đáp án D.
Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn [2 ; 4] là:
\(y = {x^3} - 3x + 5\)
TXĐ:\(D = \mathbb{R}\)
\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Leftrightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\end{array}\)
\(\begin{array}{l} - 1 \notin \left[ {2,4} \right],1 \in \left[ {2,4} \right]\\f\left( 1 \right) = 3\\f\left( 2 \right) = 7\\f\left( 4 \right) = 57\end{array}\)
Suy ra GTNN=3
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\,\,\,(a,b,c,d\, \in R)\) có đồ thị như hình vẽ sau.
Số điểm cực trị của hàm số đã cho là:
Số điểm cực trị của hàm số đã cho là 2
Chọn câu D
Tập nghiệm của bất phương trình \({\left( {{{\log }_2}x} \right)^2} - 4{\log _2}x + 3 > 0\) là:
Điều kiện: \(x > 0\)
Ta có: \({\left( {{{\log }_2}x} \right)^2} - 4{\log _2}x + 3 > 0 \)
\(\Leftrightarrow \left( {{{\log }_2}x - 1} \right)\left( {{{\log }_2}x - 3} \right) > 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{\log _2}x - 1 > 0\\{\log _2}x - 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}{\log _2}x - 1 < 0\\{\log _2}x - 3 < 0\end{array} \right.\end{array} \right.\)
\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 2\\x > 8\end{array} \right.\\\left\{ \begin{array}{l}x < 2\\x < 8\end{array} \right.\end{array} \right. \)
\(\Leftrightarrow x \in \left( { - \infty ;2} \right) \cup \left( {8; + \infty } \right)\)
Chọn đáp án B.
Cho hàm số \(y = {2^x} - 2x\). Khẳng định nào sau đây sai :
Phương trình hoành độ giao điểm của hàm số vói trục hoành là:
\({2^x} - 2x = 0 \Leftrightarrow {2^x} = 2x \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\)
Khẳng định C sai.
Chọn đáp án C.
Số đỉnh của một hình bát diện đều là:
Số đỉnh của một hình bát diện đều là 6.
Chọn đáp án A.
Khối chóp có diện tích đáy 4 \(m^2\) và chiều cao 1,5m có thể tích là:
Thể tích khối chóp là \(V = \dfrac{1}{3}.4.1,5 = 2\,\left( {{m^3}} \right)\)
Chọn đáp án D.
Một hình trụ có bán kính đáy r = 5 cm và khoảng cách giữa hai đáy bằng 7cm. Khi đó diện tích xung quanh của hình trụ là:
Diện tích xung quanh của hình trụ là:
\({S_{xq}} = 2\pi r.h = 2\pi .5.7 = 219,91\,c{m^2}\)
Chọn A.
Trong không gian cho hai điểm \(A\left( { - 1;2;3} \right),\,B\left( {0;1;1} \right)\), độ dài đoạn \(AB\) bằng
\(\begin{array}{l}\overrightarrow {AB} \left( {1; - 1; - 2} \right)\\AB = \sqrt {{1^2} + {{( - 1)}^2} + {{( - 2)}^2}} = \sqrt 6 \end{array}\)
Chọn A
Cho các số phức \({z_1} = 2 - 5i\,,\,\,{z_2} = - 2 - 3i\). Hãy tính \(|{z_1} - {z_2}|\).
\({z_1} - {z_2} = \left( {2 - 5i} \right) - ( - 2 - 3i)\)\(\, = 4 - 2i\)
\( \Rightarrow \left| {{z_1} - {z_2}} \right| = 2\sqrt 5\)
Cho số phức z thỏa mãn \(\left( {3 - 2i} \right)z = 4 + 2i\). Tìm số phức liên hợp của z.
\(\begin{array}{l}\left( {3 - 2i} \right)z = 4 + 2i\\ \Leftrightarrow z = \dfrac{{4 + 2i}}{{3 - 2i}}\\ \Leftrightarrow z = \dfrac{{(4 + 2i)(3 + 2i)}}{{9 - 4{i^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{12 + 4{i^2} + 14i}}{{13}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{8}{{13}} + \dfrac{{14}}{{13}}i\\ \Rightarrow \overline z = \dfrac{8}{{13}} - \dfrac{{14}}{{13}}i\end{array}\)
Cho hàm số y = f(x) có bảng biến thiên như dưới đây.
Đồ thị của hàm số y = |f(x)| có bao nhiêu điểm cực trị ?
Ta có bbt của hàm số \(y = \left| {f\left( x \right)} \right|\) như sau:
Vậy hàm số \(y = \left| {f\left( x \right)} \right|\) có ba điểm cực trị là \(x = {x_0} ;x = - 1,x = 3\)
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) +3 = 0 là:
Ta có: \(f\left( x \right) + 3 = 0 \Leftrightarrow f\left( x \right) = - 3\)
Số nghiệm của phương trình bằng số giao điểm của đường thẳng \(y = - 3\) với đồ thị hàm số \(y = f\left( x \right)\).
Quan sát bbt ta thấy đường thẳng \(y = - 3\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 2 điểm.
Vậy phương trình đã cho có 2 nghiệm.
Đường thẳng \(y = 2x - 1\) có bao nhiêu điểm chung với đồ thị hàm số \(y = {{{x^2} - x - 1} \over {x + 1}}\).
Phương trình hoành độ giao điểm:
\(\begin{array}{l}2x - 1 = \frac{{{x^2} - x - 1}}{{x + 1}}\\\left( {DK:x \ne - 1} \right)\\ \Leftrightarrow \left( {2x - 1} \right)\left( {x + 1} \right) = {x^2} - x - 1\\ \Leftrightarrow 2{x^2} - x + 2x - 1 = {x^2} - x - 1\\ \Leftrightarrow {x^2} + 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right.\left( {TM} \right)\end{array}\)
Vậy đường thẳng và đồ thị hàm số đã cho có 2 điểm chung.
Nếu \({\log _a}x = {1 \over 2}{\log _a}9 - {\log _a}5 + {\log _a}2\,\,\,\,(a > 0,\,a \ne 1)\) thì x bằng:
Ta có: \({\log _a}x = \dfrac{1}{2}{\log _a}9 - {\log _a}5 + {\log _a}2\, \)\(= {\log _a}3 - {\log _a}5 + {\log _a}2\)
\( \Leftrightarrow {\log _a}x = {\log _a}6 - {\log _a}5 = {\log _a}\dfrac{6}{5} \)
\(\Leftrightarrow x = \dfrac{6}{5}.\)
Chọn đáp án C.
Tìm \(I = \int {\cos \left( {4x + 3} \right)\,dx} \).
Ta có: \(I = \int {\cos \left( {4x + 3} \right)\,dx} \)
\(= \dfrac{1}{4}\int \cos \left( {4x + 3} \right)\,d\left( {4x + 3} \right) \)
\(= \dfrac{1}{4}\sin \left( {4x + 3} \right) + C\)
Chọn đáp án C.
Đặt \(F(x) = \int\limits_1^x {t\,dt} \). Khi đó F’(x) là hàm số nào dưới đây ?
Ta có: \(F(x) = \int\limits_1^x {t\,dt} = \left( {\dfrac{{{t^2}}}{2}} \right)\left| \begin{array}{l}^x\\_1\end{array} \right. = \dfrac{{{x^2}}}{2} - \dfrac{1}{2}\)\( \Rightarrow F'\left( x \right) = x.\)
Chọn đáp án A.
Giải phương trình \({z^2} - 6z + 11 = 0\), ta có nghiệm là:
\(\begin{array}{l}{z^2} - 6z + 11 = 0\\ \Leftrightarrow \left( {{z^2} - 6z + 9} \right) + 2 = 0\\ \Leftrightarrow {(z - 3)^2} + 2 = 0\\ \Rightarrow \left[ \begin{array}{l}z - 3 = i\sqrt 2 \\z - 3 = - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 3 + i\sqrt 2 \\z = 3 - i\sqrt 2 \end{array} \right.\end{array}\)
Cho z = 1 + 2i. Phần thực và phần ảo của số phức \(w = 2z + \overline z \) là:
\({\rm{w}} = 2z + \overline z = 2(1 + 2i) + (1 - 2i) \)\(\,= 3 + 2i\)
phần thực: 3 , phần ảo: 2
Khối chóp tứ giác đều có thể tích \(V = 2{{\rm{a}}^3}\), cạnh đáy bằng \(a\sqrt 6 \) thì chiều cao khối chóp bằng:
Diện tích đáy của khối chóp là \(S = \left( {a\sqrt 6 } \right)\left( {a\sqrt 6 } \right) = 6{a^2}\)
Khi đó \(h = \dfrac{{3V}}{S} = \dfrac{{6{a^3}}}{{6{a^2}}} = a\)
Chọn đáp án A.
Cho khối chóp \(S.ABC\)có đáy \(ABC\) là tam giác đều cạnh \(a\). Hai mặt bên \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với đáy. Tính thể tích khối chóp biết \(SC = a\sqrt 3 \)
Hai mặt bên \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với đáy
\( \Rightarrow SA \bot \left( {ABC} \right)\)
Áp dụng định lí Py – ta – go ta có:
\(SA = \sqrt {S{C^2} - A{C^2}} = \sqrt {3{a^2} - {a^2}} = a\sqrt 2 \)
Khi đó:
\(V = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.a\sqrt 2 .\dfrac{1}{2}a.a.\sin {60^0} = \dfrac{{{a^3}\sqrt 6 }}{{12}}\)
Chọn đáp án B.
Cho hình lập phương ABCD. A'B'C'D'. Gọi (H) là hình cầu nội tiếp hình lập phương đó. Khi đó \(\dfrac{{{V_{(H)}}}}{{{V_{ABCD.A'B'C'D'}}}}\) bằng:
Mặt cầu nội tiếp hình lập phương cạnh a có bán kính bằng \(\dfrac{a}{2}\)
Thể tích mặt cầu nội tiếp hình lập phương là:
\({V_{(H)}} = \dfrac{4}{3}\pi {\left( {\dfrac{a}{2}} \right)^3} = \dfrac{{\pi {a^3}}}{6}\)
Tỉ số: \(\dfrac{{{V_{(H)}}}}{{{V_{ABCD.A'B'C'D'}}}} = \dfrac{{\dfrac{{\pi {a^3}}}{6}}}{{{a^3}}} = \dfrac{\pi }{6}\)
Chọn B
Cho 3 điểm \(M(0;1;0),N(0;2; - 4),P(2;4;0)\). Nếu \(MNPQ\) là hình bình hành thì tọa độ của điểm \(Q\) là
Gọi \(Q(x;y;z)\), \(MNPQ\) là hình bình hành thì \(\overrightarrow {NM} = \overrightarrow {PQ} \)
Mà \(\overrightarrow {NM} = (0,-1,4); \overrightarrow {PQ}= (x-2, y-4, z)\)
\( \Leftrightarrow \)\(\left\{ {\begin{array}{*{20}{c}}{x - 2=0}\\{y -4= -1}\\{z = 4}\end{array}} \right.\)
\( \Leftrightarrow \)\(\left\{ {\begin{array}{*{20}{c}}{x =2}\\{y = 3}\\{z = 4}\end{array}} \right.\)
Vậy \(Q(2,3,4)\)
Chọn B
Đạo hàm của hàm số \(y = {\log _3}\left( {1 + \sqrt x } \right)\) là:
Ta có:
\(\begin{array}{l}y' = [{\log _3}\left( {1 + \sqrt x } \right)]'\\\;\;\; = \dfrac{{{{\left( {1 + \sqrt x } \right)}^\prime }}}{{\left( {1 + \sqrt x } \right)\ln 3}}\\\;\;\; = \dfrac{1}{{2\sqrt x \left( {1 + \sqrt x } \right)\ln 3}} \\\;\;\;= \dfrac{1}{{2\left( {x + \sqrt x } \right)\ln 3}}\\\end{array}\)
Chọn đáp án D.
Cho x, y là hai số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây sai ?
Đẳng thức sai là \({x^m}.{y^n} = {\left( {xy} \right)^{m + n}}\)
Chọn đáp án D.
Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right.\) là:
\(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}x = 1 + i - 2y{\rm{ (1)}}\\3x + iy = 2 - 3i{\rm{ (2)}}\end{array} \right.\)
Thay (1) vào (2) ta được:
\(\begin{array}{l}3(1 + i - 2y) + iy = 2 - 3i\\ \Leftrightarrow ( - 6 + i)y = - 1 - 6i\\ \Leftrightarrow y = \dfrac{{ - 1 - 6i}}{{ - 6 + i}}\\ \Leftrightarrow y = \dfrac{{\left( { - 1 - 6i} \right)\left( { - 6 - i} \right)}}{{36 - {i^2}}} = i\end{array}\)
Thay y = i vào (1) \( \Rightarrow x = 1 - i\)
Tìm số phức có phần thực bằng 12 và mô đun bằng 13.
Với phần thực bằng 12, nên số phức z có dạng \(z = 12 + bi\)
\(\begin{array}{l}\left| z \right| = 13 \Rightarrow \left| {12 + bi} \right| = 13\\ \Leftrightarrow \sqrt {{{12}^2} + {b^2}} = 13\\ \Leftrightarrow {b^2} = 25\\ \Leftrightarrow \left[ \begin{array}{l}b = 5 \Rightarrow z = 12 + 5i\\b = - 5 \Rightarrow z = 12 - 5i\end{array} \right.\end{array}\)
Trong không gian tọa độ \(Oxyz\) cho ba điểm \(M\left( {1;1;1} \right),\,N\left( {2;3;4} \right),\,P\left( {7;7;5} \right)\). Để tứ giác \(MNPQ\) là hình bình hành thì tọa độ điểm \(Q\) là
Gọi điểm \(Q\left( {x;y;z} \right)\)
\(\overrightarrow {MN} = \left( {1;2;3} \right)\) , \(\overrightarrow {QP} = \left( {7 - x;\,7 - y;\,5 - z} \right)\)
Vì \(MNPQ\) là hình bình hành nên \(\overrightarrow {MN} = \overrightarrow {QP} \Rightarrow Q\left( {6;5;2} \right)\)
Chọn B.
Cho 3 điểm \(A(1;1;1),B(1; - 1;0),C(0; - 2;3)\). Tam giác \(ABC\) là
\(\overrightarrow {AB} = (0; - 2; - 1);\overrightarrow {AC} = ( - 1; - 3;2)\)
Ta thấy \(\overrightarrow {AB} .\overrightarrow {AC} \ne 0 \Rightarrow \)\(\Delta ABC\) không vuông tại \(A\).
\(\left| {\overrightarrow {AB} } \right| \ne \left| {\overrightarrow {AC} } \right|\) \( \Rightarrow \Delta ABC\) không cân tại \(A\).
Chọn A .
Giá trị của tham sô m để phương trình \({x^3} - 3x = 2m + 1\) có ba nghiệm phân biệt là:
Xét phương trình hoành độ giao điểm
\({x^3} - 3x = 2m + 1\)
\(\Leftrightarrow {x^3} - 3x - 1 = 2m\)
Xét \(y = {x^3} - 3x - 1\)
TXĐ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Leftrightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\end{array}\)
Từ BBT ta có \( - 3 < 2m < 1 \Leftrightarrow \dfrac{{ - 3}}{2} < m < \dfrac{1}{2}\)
Trên đồ thị (C) của hàm số \(y = {{x + 10} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
\(y = \dfrac{{x + 10}}{{x + 1}}\)
TXĐ:\(\) \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
\(y = \dfrac{{x + 10}}{{x + 1}} = 1 + \dfrac{9}{{x + 1}}\)
Để đồ thị ( C) có tọa độ nguyên thì \(\dfrac{9}{{x + 1}} \in \mathbb{Z} \Rightarrow 9 \vdots \left( {x + 1} \right)\)
Mặt khác \(\left( {x + 1} \right) \in \mathbb{Z}\) nên \(\left( {x + 1} \right) \in \left\{ { \pm 1, \pm 3, \pm 9} \right\}\)
Vây có 6 giá trị của x
Hàm số nào dưới đây không là nguyên hàm của \(f(x) = \dfrac{{2x\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) ?
Ta có: \(\int {\dfrac{{2x\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}} \,dx\)
\(= \int {\dfrac{{2\left( {{x^2} + 2x + 1} \right) + 2\left( {x + 1} \right) - 4}}{{{{\left( {x + 1} \right)}^2}}}\,d\left( {x + 1} \right)}\)
\( = \int {\left( {2 + \dfrac{2}{{x + 1}} - \dfrac{4}{{{{\left( {x + 1} \right)}^2}}}} \right)\,d\left( {x + 1} \right)} \)
\( = 2x + 2\ln \left| {x + 1} \right| + \dfrac{4}{{x + 1}} + C\)
\(= \dfrac{{2{x^2} + 2x + 4}}{{x + 1}} + 2\ln \left| {x + 1} \right| + C\)
Chọn đáp án A.
Tính nguyên hàm \(\int {{{\left( {5x + 3} \right)}^3}\,dx} \) ta được:
Ta có: \(\int {{{\left( {5x + 3} \right)}^3}\,dx} \)
\(= \dfrac{1}{5}\int {{{\left( {5x + 3} \right)}^3}} \,d\left( {5x + 3} \right) \)
\(= \dfrac{1}{5}.\dfrac{{{{\left( {5x + 3} \right)}^4}}}{4} + C\)
Chọn đáp án A.
Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a biết SA vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc \(60^o\). Tính thể tích hình chóp
Gọi H là trung điểm của BC
(SBC) hợp với đáy (ABC) một góc 60o
\( \Rightarrow \widehat {SHA} = {60^0}\)
Ta có: \(AH = \sqrt {{a^2} - \dfrac{{{a^2}}}{4}} = \dfrac{{a\sqrt 3 }}{2}\)
+ \(\tan {60^0} = \dfrac{{SA}}{{AH}} \Rightarrow SA = \dfrac{{3a}}{2}\)
Khi đó: \(V = \dfrac{1}{3}.SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{3a}}{2}.\dfrac{1}{2}.a.a.\sin {60^0} = \dfrac{{{a^3}\sqrt 3 }}{8}\)
Chọn đáp án A.
Cho khối chóp \(S.ABCD\)có đáy \(ABCD\) là hình chữ nhật \(AD = 2a,\,AB = a\). Gọi \(H\) là trung điểm của \(AD\) , biết \(SH \bot \left( {ABCD} \right)\). Tính thể tích khối chóp biết \(SA = a\sqrt 5 \).
Ta có: \(AH = DH = \dfrac{{AD}}{2} = a\)
Áp dụng định lí Py – ta – go ta có:
\(SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {5{a^2} - {a^2}} = 2a\)
Khi đó ta có:
\(V = \dfrac{1}{3}.SH.{S_{ABCD}} = \dfrac{1}{3}.2a.2a.a = \dfrac{{4{a^3}}}{3}\)
Chọn đáp án C.
Cho hình lập phương ABCD.A'B'C'D'. Gọi (H) là hình nón tròn xoay nội tiếp hình lập phương đó. Khi đó \(\dfrac{{{V_{(H)}}}}{{{V_{ABCD.A'B'C'D'}}}}\) bằng:
Khối nón có đỉnh là tâm hình vuông ABCD và đáy là đường tròn nội tiếp hình vuông A’B’C’D’ có bán kính đáy \(R = \dfrac{a}{2}\) , chiều cao \(h = a\)
Vậy thể tích khối nón là: \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {\left( {\dfrac{a}{2}} \right)^2}a = \dfrac{1}{{12}}\pi {a^3}.\)
Chọn B
Trong không gian tọa độ \(Oxyz\)cho ba điểm \(A\left( { - 1;2;2} \right),\,B\left( {0;1;3} \right),\,C\left( { - 3;4;0} \right)\). Để tứ giác \(ABCD\) là hình bình hành thì tọa độ điểm \(D\) là
Gọi điểm \(D\left( {x;y;z} \right)\)
\(\overrightarrow {AB} = \left( {1; - 1;1} \right)\) , \(\overrightarrow {DC} = \left( { - 3 - x;\,4 - y;\, - z} \right)\)
Vì \(ABCD\) là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \Rightarrow D\left( { - 4;5; - 1} \right)\)
Chọn A
Phương trình \({z^2} - 2z + 3 = 0\) có các nghiệm là:
\(\begin{array}{l}{z^2} - 2z + 3 = 0\\ \Leftrightarrow \left( {{z^2} - 2z + 1} \right) + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} = - 2\\ \Rightarrow \left[ \begin{array}{l}z - 1 = i\sqrt 2 \\z - 1 = - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 1 + i\sqrt 2 \\z = 1 - i\sqrt 2 \end{array} \right.\end{array}\)
Mô đun của tổng hai số phức \({z_1} = 3 - 4i\,,\,\,{z_2} = 4 + 3i\):
\(\begin{array}{l}{z_1} + {z_2} = 3 - 4i + 4 + 3i = 7 - i\\ \Rightarrow \left| {{z_1} + {z_2}} \right| = 5\sqrt 2 \end{array}\)
Cho hình chóp tứ giác có đáy là hình chữ nhật cạnh các cạnh bên có độ dài bằng nhau và bằng . Thể tích khối chóp bằng:
Gọi O là giao điểm của AC và BD
Hình chóp có các cạnh bên bằng nhau nên chân đường vuông góc kẻ từ S xuống mặt phẳng (ABCD) là điểm O
Hay \(SO \bot \left( {ABCD} \right)\)
Ta có: \(BD = \sqrt {A{B^2} + A{C^2}} = \sqrt {9{a^2} + 16{a^2}} = 5a\)
+ \(SO = \sqrt {S{D^2} - O{D^2}} = \sqrt {25{a^2} - \dfrac{{25{a^2}}}{4}} = \dfrac{{5a\sqrt 3 }}{2}\)
Khi đó ta có:
\(V = \dfrac{1}{3}.SO.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{5a\sqrt 3 }}{2}.3a.4a = 10{a^3}\sqrt 3 \)
Chọn đáp án C.
Cho tứ diện ABCD có AD⊥(ABC) và BD⊥BC. Khi quay tứ điện đó xung quanh trục là cạnh AB, có bao nhiêu hình nón được tạo thành.
Tứ diện ABCD có \(\widehat {BAD} = {90^o}\) nên \(\widehat {ABD} = \alpha \) là một góc nhọn. Khi quay các cạnh của tứ diện đó xung quanh cạnh AB thì cạnh BD tạo thành một hình nón tròn xoay đỉnh B có trục là AB, cạnh AD vuông góc với AB tạo thành đáy của hình nón đó.
Mặt khác theo giả thiết ta có \(BD \bot BC\) nên\(AB \bot BC\) . Ta có \(\widehat {BAC} = \beta \) là một góc nhọn. Do đó khi quay các cạnh của tứ diện xung quanh cạnh AB thì cạnh AC tạo thành một hình nón tròn xoay đỉnh A có trục là AB, còn cạnh BC tạo thành đáy của hình nón.
Như vậy khi quay tất cả các cạnh của tứ diện xung quanh trục AB thì các cạnh BD và AC tạo thành hai hình nón.
Chọn A.
Cho hàm số \(y = {{x + 3} \over {1 - x}}\). Mệnh đề nào sau đây sai ?
\(y = \dfrac{{x + 3}}{{1 - x}}\)
TXĐ: \(\)\(D = \mathbb{R}\backslash \left\{ 1 \right\}\)
\(y' = \frac{{3.1 - 1.\left( { - 1} \right)}}{{{{\left( {1 - x} \right)}^2}}} = \frac{4}{{{{\left( {1 - x} \right)}^2}}} > 0,\) \(\forall x \ne 1\)
Vậy hàm số đồng biến trên \(\left( { - \infty ,1} \right)\) và \(\left( {1, + \infty } \right)\)
\(y = \dfrac{{{x^4}}}{4} + 2x - 3\)
TXĐ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = {x^3} + 4x\\y' = 0 \Leftrightarrow {x^3} + 4x = 0\\ \Leftrightarrow x = 0\end{array}\)
Hàm số đồng biến trên\(\left( {0, + \infty } \right)\)
Tập nghiệm của bất phương trình \({\log _{{1 \over 2}}}(2x - 2) > {\log _{{1 \over 2}}}(x + 1)\) là:
Điều kiện: \(x > 1.\)
Ta có: \({\log _{\dfrac{1}{2}}}(2x - 2) > {\log _{\dfrac{1}{2}}}(x + 1)\)
\(\Leftrightarrow 2x - 2 < x + 1\)
\( \Leftrightarrow x < 3\)
Kết hợp điều kiện: \(x \in \left( {1;3} \right)\)
Chọn đáp án B.
Nghiệm của phương trình \({\log _2}({\log _4}x) = 1\) là:
Điều kiện: \(\left\{ \begin{array}{l}{\log _4}x > 0\\x > 0\end{array} \right. \Leftrightarrow x > 1\)
Ta có: \({\log _2}({\log _4}x) = 1 \Leftrightarrow {\log _4}x = 2 \)
\(\Leftrightarrow x = {4^2} = 16.\)
Chọn đáp án A.
Cho \(f(x) \ge g(x),\forall x \in [a;b]\). Hình phẳng S1 giới hạn bởi đường y = f(x), y = 0, x = a, x = b (a<b) đem quay quanh Ox có thể tích V1. Hình phẳng S2 giới hạn bởi đường y = g(x), y = 0, x = a, x = b đem quay quanh Ox có thể tích V2. Lựa chọn phương án đúng.
Ta có:
+ \({V_1} = \pi \int\limits_a^b {{f^2}\left( x \right)} \,dx\)
+ \({V_2} = \pi \int\limits_a^b {{g^2}\left( x \right)} \,dx\)
Nếu V1 = V2 thì chưa chắc ta có: \(f(x) = g(x),\forall x \in [a;b]\).
Chọn đáp án D.
Diện tích hình phẳng giới hạn bởi các đường : \(y = {x^2}\,,\,y = \dfrac{{{x^2}}}{8},\,\,y = \dfrac{{27}}{x}\) là:
Phương trình hoành độ giao điểm của các đồ thị
\(\left\{ \begin{array}{l}{x^2} = \dfrac{{{x^2}}}{8}\\{x^2} = \dfrac{{27}}{x}\\\dfrac{{{x^2}}}{8} = \dfrac{{27}}{x}\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}x = 0\\x = 2\\x = 3\end{array} \right.\)
Khi đó diện tích hình phẳng được xác định bằng công thức:
\(S = \int\limits_0^2 {\left( {{x^2} - \dfrac{{x{}^2}}{8}} \right)} \,dx + \int\limits_2^3 {\left( {{x^2} - \dfrac{{27}}{x}} \right)\,dx} \)
\(= \dfrac{7}{8}\left( {\dfrac{{{x^3}}}{3}} \right)\left| \begin{array}{l}^2\\_0\end{array} \right. + \left( {\dfrac{{{x^3}}}{3} - 27\ln \left| x \right|} \right)\left| \begin{array}{l}^3\\_2\end{array} \right.\)
\( = \dfrac{7}{8}\left( {\dfrac{8}{3}} \right) + \left( {9 - 27\ln 3 - \dfrac{8}{3} + 27\ln 2} \right)\)
\(= 26 - 27\ln \dfrac{3}{2}\)
Chọn phương án đúng.
+ \(\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\sin }^2}x}}} = - \cot x\left| {_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} = - 1 - } \right.1 \)\(\,= - 2.\) sai vì hàm số không liên tục
+ \(\int\limits_2^1 {dx} = 1 = - \int\limits_1^2 {dx} = - \left( x \right)\left| \begin{array}{l}^2\\_1\end{array} \right. \)\(\,= - \left( {2 - 1} \right) = - 1.\)
+ \(\int\limits_{ - e}^e {\dfrac{{dx}}{x}} = \ln \left| x \right|\left| \begin{array}{l}^e\\_{ - e}\end{array} \right.\)\(\, = \ln \left| e \right| - \ln \left| { - e} \right| = 0.\)
Chọn đáp án D.
Cho điểm \(M\left( {1;2; - 3} \right)\), khoảng cách từ điểm \(M\)đến mặt phẳng \(\left( {Oxy} \right)\) bằng
Với \(M\left( {a;b;c} \right) \Rightarrow d\left( {M,\left( {Oxy} \right)} \right) = \left| c \right|\)
Chọn D