Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Cần Thạnh

Đề thi thử THPT QG năm 2022 môn Toán

  • Hocon247

  • 50 câu hỏi

  • 90 phút

  • 52 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 150728

Hãy tìm \(\int {\dfrac{{5x + 1}}{{{x^2} - 6x + 9}}\,dx} \).

Xem đáp án

Ta có: \(\int {\dfrac{{5x + 1}}{{{x^2} - 6x + 9}}\,dx}  \)

\(= \int {\dfrac{{5\left( {x - 3} \right) + 16}}{{{{\left( {x - 3} \right)}^2}}}} \,dx \)

\(= \int {\left( {\dfrac{5}{{x - 3}} + \dfrac{{16}}{{{{\left( {x - 3} \right)}^2}}}} \right)} \,d\left( {x - 3} \right)\)

\( = 5\ln \left| {x - 3} \right| - \dfrac{{16}}{{\left( {x - 3} \right)}} + C\)

Chọn đáp án D.

Câu 2: Trắc nghiệm ID: 150729

Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = \tan x,\,\,y = 0,\,\,x = \dfrac{\pi }{3}\) quanh Ox là:

Xem đáp án

Thể tích khối tròn xoay được xác định bởi công thức:

\(V = \pi \int\limits_0^{\dfrac{\pi }{3}} {{{\tan }^2}x\,dx}  \)

\(\;\;\;= \pi \int\limits_0^{\dfrac{\pi }{3}} {\left( {\dfrac{1}{{{{\cos }^2}x}} - 1} \right)\,dx} \)

\(\;\;\;= \pi \left( {\tan x - x} \right)\left| \begin{array}{l}^{\dfrac{\pi }{3}}\\_0\end{array} \right. \)

\(\;\;\;= \pi \left( {\sqrt 3  - \dfrac{\pi }{3}} \right) = \pi \sqrt 3  - \dfrac{{{\pi ^2}}}{3}\)

Chọn đáp án D.

Câu 3: Trắc nghiệm ID: 150730

Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn [2 ; 4] là:

Xem đáp án

\(y = {x^3} - 3x + 5\)

TXĐ:\(D = \mathbb{R}\)

\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Leftrightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\)

\(\begin{array}{l} - 1 \notin \left[ {2,4} \right],1 \in \left[ {2,4} \right]\\f\left( 1 \right) = 3\\f\left( 2 \right) = 7\\f\left( 4 \right) = 57\end{array}\)

Suy ra GTNN=3

Câu 5: Trắc nghiệm ID: 150732

Tập nghiệm của bất phương trình \({\left( {{{\log }_2}x} \right)^2} - 4{\log _2}x + 3 > 0\)  là:

Xem đáp án

Điều kiện: \(x > 0\)

Ta có: \({\left( {{{\log }_2}x} \right)^2} - 4{\log _2}x + 3 > 0 \)

\(\Leftrightarrow \left( {{{\log }_2}x - 1} \right)\left( {{{\log }_2}x - 3} \right) > 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{\log _2}x - 1 > 0\\{\log _2}x - 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}{\log _2}x - 1 < 0\\{\log _2}x - 3 < 0\end{array} \right.\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 2\\x > 8\end{array} \right.\\\left\{ \begin{array}{l}x < 2\\x < 8\end{array} \right.\end{array} \right. \)

\(\Leftrightarrow x \in \left( { - \infty ;2} \right) \cup \left( {8; + \infty } \right)\)

Chọn đáp án B.

Câu 6: Trắc nghiệm ID: 150733

Cho hàm số \(y = {2^x} - 2x\). Khẳng định nào sau đây sai :

Xem đáp án

Phương trình hoành độ giao điểm của hàm số vói trục hoành là:

\({2^x} - 2x = 0 \Leftrightarrow {2^x} = 2x \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\)

Khẳng định C sai.

Chọn đáp án C.

Câu 7: Trắc nghiệm ID: 150734

Số đỉnh của một hình bát diện đều là:

Xem đáp án

Số đỉnh của một hình bát diện đều là 6.

Chọn đáp án A.

Câu 8: Trắc nghiệm ID: 150735

Khối chóp có diện tích đáy 4 \(m^2\) và chiều cao 1,5m có thể tích là:

Xem đáp án

Thể tích khối chóp là \(V = \dfrac{1}{3}.4.1,5 = 2\,\left( {{m^3}} \right)\)

Chọn đáp án D.

Câu 9: Trắc nghiệm ID: 150736

Một hình trụ có bán kính đáy r = 5 cm và khoảng cách giữa hai đáy bằng 7cm. Khi đó diện tích xung quanh của hình trụ là:

Xem đáp án

Diện tích xung quanh của hình trụ là:

\({S_{xq}} = 2\pi r.h = 2\pi .5.7 = 219,91\,c{m^2}\)

Chọn A.

Câu 10: Trắc nghiệm ID: 150737

Trong không gian cho hai điểm \(A\left( { - 1;2;3} \right),\,B\left( {0;1;1} \right)\), độ dài đoạn \(AB\) bằng

Xem đáp án

\(\begin{array}{l}\overrightarrow {AB} \left( {1; - 1; - 2} \right)\\AB = \sqrt {{1^2} + {{( - 1)}^2} + {{( - 2)}^2}}  = \sqrt 6 \end{array}\)

Chọn A

Câu 11: Trắc nghiệm ID: 150738

Cho các số phức \({z_1} = 2 - 5i\,,\,\,{z_2} =  - 2 - 3i\). Hãy tính \(|{z_1} - {z_2}|\).

Xem đáp án

\({z_1} - {z_2} = \left( {2 - 5i} \right) - ( - 2 - 3i)\)\(\, = 4 - 2i\)

\( \Rightarrow \left| {{z_1} - {z_2}} \right| = 2\sqrt 5\)

Câu 12: Trắc nghiệm ID: 150739

Cho số phức z thỏa mãn \(\left( {3 - 2i} \right)z = 4 + 2i\). Tìm số phức liên hợp của z.

Xem đáp án

\(\begin{array}{l}\left( {3 - 2i} \right)z = 4 + 2i\\ \Leftrightarrow z = \dfrac{{4 + 2i}}{{3 - 2i}}\\ \Leftrightarrow z = \dfrac{{(4 + 2i)(3 + 2i)}}{{9 - 4{i^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{12 + 4{i^2} + 14i}}{{13}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{8}{{13}} + \dfrac{{14}}{{13}}i\\ \Rightarrow \overline z  = \dfrac{8}{{13}} - \dfrac{{14}}{{13}}i\end{array}\)

Câu 13: Trắc nghiệm ID: 150740

Cho hàm số y = f(x) có bảng biến thiên như dưới đây.

Đồ thị của hàm số y = |f(x)| có bao nhiêu điểm cực trị ?

Xem đáp án

Ta có bbt của hàm số \(y = \left| {f\left( x \right)} \right|\) như sau:

Vậy hàm số \(y = \left| {f\left( x \right)} \right|\) có ba điểm cực trị là \(x = {x_0} ;x =  - 1,x = 3\)

Câu 14: Trắc nghiệm ID: 150741

Cho hàm số y = f(x) có bảng biến thiên như sau:

Số nghiệm của phương trình f(x) +3 = 0 là:

Xem đáp án

Ta có: \(f\left( x \right) + 3 = 0 \Leftrightarrow f\left( x \right) =  - 3\)

Số nghiệm của phương trình bằng số giao điểm của đường thẳng \(y =  - 3\) với đồ thị hàm số \(y = f\left( x \right)\).

Quan sát bbt ta thấy đường thẳng \(y =  - 3\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 2 điểm.

Vậy phương trình đã cho có 2 nghiệm.

Câu 15: Trắc nghiệm ID: 150742

Đường thẳng \(y = 2x - 1\) có bao nhiêu điểm chung với đồ thị hàm số \(y = {{{x^2} - x - 1} \over {x + 1}}\).

Xem đáp án

Phương trình hoành độ giao điểm:

\(\begin{array}{l}2x - 1 = \frac{{{x^2} - x - 1}}{{x + 1}}\\\left( {DK:x \ne  - 1} \right)\\ \Leftrightarrow \left( {2x - 1} \right)\left( {x + 1} \right) = {x^2} - x - 1\\ \Leftrightarrow 2{x^2} - x + 2x - 1 = {x^2} - x - 1\\ \Leftrightarrow {x^2} + 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\end{array} \right.\left( {TM} \right)\end{array}\)  

Vậy đường thẳng và đồ thị hàm số đã cho có 2 điểm chung.

Câu 16: Trắc nghiệm ID: 150743

Nếu \({\log _a}x = {1 \over 2}{\log _a}9 - {\log _a}5 + {\log _a}2\,\,\,\,(a > 0,\,a \ne 1)\) thì x bằng:

Xem đáp án

Ta có: \({\log _a}x = \dfrac{1}{2}{\log _a}9 - {\log _a}5 + {\log _a}2\, \)\(= {\log _a}3 - {\log _a}5 + {\log _a}2\)

\( \Leftrightarrow {\log _a}x = {\log _a}6 - {\log _a}5 = {\log _a}\dfrac{6}{5} \)

\(\Leftrightarrow x = \dfrac{6}{5}.\)

Chọn đáp án C.

Câu 17: Trắc nghiệm ID: 150744

Tìm \(I = \int {\cos \left( {4x + 3} \right)\,dx} \).

Xem đáp án

Ta có: \(I = \int {\cos \left( {4x + 3} \right)\,dx}  \)

\(= \dfrac{1}{4}\int \cos \left( {4x + 3} \right)\,d\left( {4x + 3} \right) \)

\(= \dfrac{1}{4}\sin \left( {4x + 3} \right)  + C\)

Chọn đáp án C.

Câu 18: Trắc nghiệm ID: 150745

Đặt \(F(x) = \int\limits_1^x {t\,dt} \). Khi đó F’(x) là hàm số nào dưới đây ?

Xem đáp án

Ta có: \(F(x) = \int\limits_1^x {t\,dt}  = \left( {\dfrac{{{t^2}}}{2}} \right)\left| \begin{array}{l}^x\\_1\end{array} \right. = \dfrac{{{x^2}}}{2} - \dfrac{1}{2}\)\( \Rightarrow F'\left( x \right) = x.\)

Chọn đáp án A.

Câu 19: Trắc nghiệm ID: 150746

Giải phương trình \({z^2} - 6z + 11 = 0\), ta có nghiệm là:

Xem đáp án

\(\begin{array}{l}{z^2} - 6z + 11 = 0\\ \Leftrightarrow \left( {{z^2} - 6z + 9} \right) + 2 = 0\\ \Leftrightarrow {(z - 3)^2} + 2 = 0\\ \Rightarrow \left[ \begin{array}{l}z - 3 = i\sqrt 2 \\z - 3 =  - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 3 + i\sqrt 2 \\z = 3 - i\sqrt 2 \end{array} \right.\end{array}\)

Câu 20: Trắc nghiệm ID: 150747

Cho z = 1 + 2i. Phần thực và phần ảo của số phức \(w = 2z + \overline z \) là:

Xem đáp án

\({\rm{w}} = 2z + \overline z  = 2(1 + 2i) + (1 - 2i) \)\(\,= 3 + 2i\)

phần thực: 3   ,   phần  ảo: 2

Câu 21: Trắc nghiệm ID: 150748

Khối chóp tứ giác đều có thể tích \(V = 2{{\rm{a}}^3}\), cạnh đáy bằng \(a\sqrt 6 \) thì chiều cao khối chóp bằng:

Xem đáp án

Diện tích đáy của khối chóp là \(S = \left( {a\sqrt 6 } \right)\left( {a\sqrt 6 } \right) = 6{a^2}\)

Khi đó \(h = \dfrac{{3V}}{S} = \dfrac{{6{a^3}}}{{6{a^2}}} = a\)

Chọn đáp án A.

Câu 22: Trắc nghiệm ID: 150749

Cho khối chóp \(S.ABC\)có đáy \(ABC\) là tam giác đều cạnh \(a\). Hai mặt bên \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với đáy. Tính thể tích khối chóp biết \(SC = a\sqrt 3 \)

Xem đáp án

Hai mặt bên \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với đáy

\( \Rightarrow SA \bot \left( {ABC} \right)\)

Áp dụng định lí Py – ta – go ta có:

\(SA = \sqrt {S{C^2} - A{C^2}}  = \sqrt {3{a^2} - {a^2}}  = a\sqrt 2 \)

Khi đó:

\(V = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.a\sqrt 2 .\dfrac{1}{2}a.a.\sin {60^0} = \dfrac{{{a^3}\sqrt 6 }}{{12}}\)

Chọn đáp án B.

Câu 23: Trắc nghiệm ID: 150750

Cho hình lập phương ABCD. A'B'C'D'. Gọi (H) là hình cầu nội tiếp hình lập phương đó. Khi đó \(\dfrac{{{V_{(H)}}}}{{{V_{ABCD.A'B'C'D'}}}}\) bằng:

Xem đáp án

Mặt cầu nội tiếp hình lập phương cạnh a có bán kính bằng \(\dfrac{a}{2}\)

Thể tích mặt cầu nội tiếp hình lập phương là:

\({V_{(H)}} = \dfrac{4}{3}\pi {\left( {\dfrac{a}{2}} \right)^3} = \dfrac{{\pi {a^3}}}{6}\)

Tỉ số: \(\dfrac{{{V_{(H)}}}}{{{V_{ABCD.A'B'C'D'}}}} = \dfrac{{\dfrac{{\pi {a^3}}}{6}}}{{{a^3}}} = \dfrac{\pi }{6}\)

Chọn B

Câu 24: Trắc nghiệm ID: 150751

Cho 3 điểm \(M(0;1;0),N(0;2; - 4),P(2;4;0)\). Nếu \(MNPQ\) là hình bình hành thì tọa độ của điểm \(Q\) là

Xem đáp án

Gọi \(Q(x;y;z)\), \(MNPQ\) là hình bình hành thì \(\overrightarrow {NM}  = \overrightarrow {PQ} \)

Mà \(\overrightarrow {NM}  = (0,-1,4); \overrightarrow {PQ}= (x-2, y-4, z)\)

\( \Leftrightarrow \)\(\left\{ {\begin{array}{*{20}{c}}{x - 2=0}\\{y -4= -1}\\{z = 4}\end{array}} \right.\)

\( \Leftrightarrow \)\(\left\{ {\begin{array}{*{20}{c}}{x =2}\\{y = 3}\\{z = 4}\end{array}} \right.\)

Vậy \(Q(2,3,4)\)     

Chọn B           

Câu 25: Trắc nghiệm ID: 150752

Đạo hàm của hàm số \(y = {\log _3}\left( {1 + \sqrt x } \right)\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}y' = [{\log _3}\left( {1 + \sqrt x } \right)]'\\\;\;\; = \dfrac{{{{\left( {1 + \sqrt x } \right)}^\prime }}}{{\left( {1 + \sqrt x } \right)\ln 3}}\\\;\;\; = \dfrac{1}{{2\sqrt x \left( {1 + \sqrt x } \right)\ln 3}} \\\;\;\;= \dfrac{1}{{2\left( {x + \sqrt x } \right)\ln 3}}\\\end{array}\)

Chọn đáp án D.

Câu 26: Trắc nghiệm ID: 150753

Cho  x, y là hai số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây sai ?

Xem đáp án

Đẳng thức sai là \({x^m}.{y^n} = {\left( {xy} \right)^{m + n}}\)

Chọn đáp án D.

Câu 27: Trắc nghiệm ID: 150754

Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right.\) là:

Xem đáp án

\(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 1 + i - 2y{\rm{       (1)}}\\3x + iy = 2 - 3i{\rm{   (2)}}\end{array} \right.\)

Thay (1) vào (2) ta được:

\(\begin{array}{l}3(1 + i - 2y) + iy = 2 - 3i\\ \Leftrightarrow ( - 6 + i)y =  - 1 - 6i\\ \Leftrightarrow y = \dfrac{{ - 1 - 6i}}{{ - 6 + i}}\\ \Leftrightarrow y = \dfrac{{\left( { - 1 - 6i} \right)\left( { - 6 - i} \right)}}{{36 - {i^2}}} = i\end{array}\)

Thay y = i vào (1) \( \Rightarrow x = 1 - i\)

Câu 28: Trắc nghiệm ID: 150755

Tìm số phức có phần thực bằng 12 và mô đun bằng 13.

Xem đáp án

Với phần thực bằng 12, nên số phức z có dạng \(z = 12 + bi\)

\(\begin{array}{l}\left| z \right| = 13 \Rightarrow \left| {12 + bi} \right| = 13\\ \Leftrightarrow \sqrt {{{12}^2} + {b^2}}  = 13\\ \Leftrightarrow {b^2} = 25\\ \Leftrightarrow \left[ \begin{array}{l}b = 5 \Rightarrow z = 12 + 5i\\b =  - 5 \Rightarrow z = 12 - 5i\end{array} \right.\end{array}\)

Câu 29: Trắc nghiệm ID: 150756

Trong không gian tọa độ \(Oxyz\) cho ba điểm \(M\left( {1;1;1} \right),\,N\left( {2;3;4} \right),\,P\left( {7;7;5} \right)\). Để tứ giác \(MNPQ\) là hình bình hành thì tọa độ điểm \(Q\) là

Xem đáp án

Gọi điểm \(Q\left( {x;y;z} \right)\)

\(\overrightarrow {MN}  = \left( {1;2;3} \right)\) , \(\overrightarrow {QP}  = \left( {7 - x;\,7 - y;\,5 - z} \right)\)

Vì \(MNPQ\) là hình bình hành nên \(\overrightarrow {MN}  = \overrightarrow {QP}  \Rightarrow Q\left( {6;5;2} \right)\)

Chọn B.

Câu 30: Trắc nghiệm ID: 150757

Cho 3 điểm \(A(1;1;1),B(1; - 1;0),C(0; - 2;3)\). Tam giác \(ABC\) là

Xem đáp án

\(\overrightarrow {AB}  = (0; - 2; - 1);\overrightarrow {AC}  = ( - 1; - 3;2)\)

Ta thấy \(\overrightarrow {AB} .\overrightarrow {AC}  \ne 0 \Rightarrow \)\(\Delta ABC\) không vuông tại \(A\).

\(\left| {\overrightarrow {AB} } \right| \ne \left| {\overrightarrow {AC} } \right|\) \( \Rightarrow \Delta ABC\) không cân tại \(A\).

Chọn A .

Câu 31: Trắc nghiệm ID: 150758

Giá trị của tham sô m để phương trình \({x^3} - 3x = 2m + 1\) có ba nghiệm phân biệt là:

Xem đáp án

Xét phương trình hoành độ giao điểm

\({x^3} - 3x = 2m + 1\)

\(\Leftrightarrow {x^3} - 3x - 1 = 2m\)

Xét \(y = {x^3} - 3x - 1\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Leftrightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\) 

Từ BBT ta có \( - 3 < 2m < 1 \Leftrightarrow \dfrac{{ - 3}}{2} < m < \dfrac{1}{2}\)

Câu 32: Trắc nghiệm ID: 150759

Trên đồ thị (C) của hàm số \(y = {{x + 10} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?

Xem đáp án

\(y = \dfrac{{x + 10}}{{x + 1}}\)

TXĐ:\(\) \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

\(y = \dfrac{{x + 10}}{{x + 1}} = 1 + \dfrac{9}{{x + 1}}\)

Để đồ thị  ( C) có tọa độ nguyên thì \(\dfrac{9}{{x + 1}} \in \mathbb{Z} \Rightarrow 9 \vdots \left( {x + 1} \right)\)

Mặt khác  \(\left( {x + 1} \right) \in \mathbb{Z}\) nên \(\left( {x + 1} \right) \in \left\{ { \pm 1, \pm 3, \pm 9} \right\}\)

Vây có 6 giá trị của x

Câu 33: Trắc nghiệm ID: 150760

Hàm số nào dưới đây không là nguyên hàm của \(f(x) = \dfrac{{2x\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) ?

Xem đáp án

Ta có: \(\int {\dfrac{{2x\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}} \,dx\)

\(= \int {\dfrac{{2\left( {{x^2} + 2x + 1} \right) + 2\left( {x + 1} \right) - 4}}{{{{\left( {x + 1} \right)}^2}}}\,d\left( {x + 1} \right)}\)

\(  = \int {\left( {2 + \dfrac{2}{{x + 1}} - \dfrac{4}{{{{\left( {x + 1} \right)}^2}}}} \right)\,d\left( {x + 1} \right)} \)

\( = 2x + 2\ln \left| {x + 1} \right| + \dfrac{4}{{x + 1}} + C\)

\(= \dfrac{{2{x^2} + 2x + 4}}{{x + 1}} + 2\ln \left| {x + 1} \right| + C\)

Chọn đáp án A.

Câu 34: Trắc nghiệm ID: 150761

Tính nguyên hàm \(\int {{{\left( {5x + 3} \right)}^3}\,dx} \) ta được:

Xem đáp án

Ta có: \(\int {{{\left( {5x + 3} \right)}^3}\,dx}  \)

\(= \dfrac{1}{5}\int {{{\left( {5x + 3} \right)}^3}} \,d\left( {5x + 3} \right) \)

\(= \dfrac{1}{5}.\dfrac{{{{\left( {5x + 3} \right)}^4}}}{4} + C\)

Chọn đáp án A.

Câu 35: Trắc nghiệm ID: 150762

Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a biết  SA   vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc \(60^o\).   Tính thể tích hình chóp

Xem đáp án

Gọi H là trung điểm của BC

(SBC) hợp với đáy (ABC) một góc 60o

\( \Rightarrow \widehat {SHA} = {60^0}\)

Ta có: \(AH = \sqrt {{a^2} - \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt 3 }}{2}\)

+ \(\tan {60^0} = \dfrac{{SA}}{{AH}} \Rightarrow SA = \dfrac{{3a}}{2}\)

Khi đó: \(V = \dfrac{1}{3}.SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{3a}}{2}.\dfrac{1}{2}.a.a.\sin {60^0} = \dfrac{{{a^3}\sqrt 3 }}{8}\)

Chọn đáp án A.

Câu 36: Trắc nghiệm ID: 150763

Cho khối chóp \(S.ABCD\)có đáy \(ABCD\) là hình chữ nhật \(AD = 2a,\,AB = a\). Gọi \(H\) là trung điểm của \(AD\) , biết \(SH \bot \left( {ABCD} \right)\). Tính thể tích khối chóp biết \(SA = a\sqrt 5 \).

Xem đáp án

Ta có: \(AH = DH = \dfrac{{AD}}{2} = a\)

Áp dụng định lí Py – ta – go ta có:

\(SH = \sqrt {S{A^2} - A{H^2}}  = \sqrt {5{a^2} - {a^2}}  = 2a\)

Khi đó ta có:

\(V = \dfrac{1}{3}.SH.{S_{ABCD}} = \dfrac{1}{3}.2a.2a.a = \dfrac{{4{a^3}}}{3}\)

Chọn đáp án C.

Câu 37: Trắc nghiệm ID: 150764

Cho hình lập phương ABCD.A'B'C'D'. Gọi (H) là hình nón tròn xoay nội tiếp hình lập phương đó. Khi đó \(\dfrac{{{V_{(H)}}}}{{{V_{ABCD.A'B'C'D'}}}}\) bằng:

Xem đáp án

Khối nón có đỉnh là tâm hình vuông ABCD và đáy là đường tròn nội tiếp hình vuông A’B’C’D’ có bán kính đáy \(R = \dfrac{a}{2}\) , chiều cao \(h = a\)

Vậy thể tích khối nón là: \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {\left( {\dfrac{a}{2}} \right)^2}a = \dfrac{1}{{12}}\pi {a^3}.\)

Chọn B

Câu 38: Trắc nghiệm ID: 150765

Trong không gian tọa độ \(Oxyz\)cho ba điểm \(A\left( { - 1;2;2} \right),\,B\left( {0;1;3} \right),\,C\left( { - 3;4;0} \right)\). Để tứ giác \(ABCD\) là hình bình hành thì tọa độ điểm \(D\) là

Xem đáp án

Gọi điểm \(D\left( {x;y;z} \right)\)

\(\overrightarrow {AB}  = \left( {1; - 1;1} \right)\) , \(\overrightarrow {DC}  = \left( { - 3 - x;\,4 - y;\, - z} \right)\)

Vì \(ABCD\) là hình bình hành nên \(\overrightarrow {AB}  = \overrightarrow {DC}  \Rightarrow D\left( { - 4;5; - 1} \right)\)

Chọn A

Câu 39: Trắc nghiệm ID: 150766

Phương trình \({z^2} - 2z + 3 = 0\) có các nghiệm là:

Xem đáp án

\(\begin{array}{l}{z^2} - 2z + 3 = 0\\ \Leftrightarrow \left( {{z^2} - 2z + 1} \right) + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} =  - 2\\ \Rightarrow \left[ \begin{array}{l}z - 1 = i\sqrt 2 \\z - 1 =  - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 1 + i\sqrt 2 \\z = 1 - i\sqrt 2 \end{array} \right.\end{array}\) 

Câu 40: Trắc nghiệm ID: 150767

Mô đun của tổng hai số phức \({z_1} = 3 - 4i\,,\,\,{z_2} = 4 + 3i\):

Xem đáp án

\(\begin{array}{l}{z_1} + {z_2} = 3 - 4i + 4 + 3i = 7 - i\\ \Rightarrow \left| {{z_1} + {z_2}} \right| = 5\sqrt 2 \end{array}\)

Câu 41: Trắc nghiệm ID: 150768

Cho hình chóp tứ giác  có đáy là hình chữ nhật cạnh  các cạnh bên có độ dài bằng nhau và bằng . Thể tích khối chóp  bằng:

Xem đáp án

Gọi O là giao điểm của AC và BD

Hình chóp có các cạnh bên bằng nhau nên chân đường vuông góc kẻ từ S xuống mặt phẳng (ABCD) là điểm O

Hay \(SO \bot \left( {ABCD} \right)\)

Ta có: \(BD = \sqrt {A{B^2} + A{C^2}}  = \sqrt {9{a^2} + 16{a^2}}  = 5a\)

+ \(SO = \sqrt {S{D^2} - O{D^2}}  = \sqrt {25{a^2} - \dfrac{{25{a^2}}}{4}}  = \dfrac{{5a\sqrt 3 }}{2}\)

Khi đó ta có:

\(V = \dfrac{1}{3}.SO.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{5a\sqrt 3 }}{2}.3a.4a = 10{a^3}\sqrt 3 \)

Chọn đáp án C.

Câu 42: Trắc nghiệm ID: 150769

Cho tứ diện ABCD có AD⊥(ABC) và BD⊥BC. Khi quay tứ điện đó xung quanh trục là cạnh AB, có bao nhiêu hình nón được tạo thành.

Xem đáp án

Tứ diện ABCD có \(\widehat {BAD} = {90^o}\) nên \(\widehat {ABD} = \alpha \) là một góc nhọn. Khi quay các cạnh của tứ diện đó xung quanh cạnh AB thì cạnh BD tạo thành một hình nón tròn xoay đỉnh B có trục là AB, cạnh AD vuông góc với AB tạo thành đáy của hình nón đó.

Mặt khác theo giả thiết ta có  \(BD \bot BC\) nên\(AB \bot BC\) . Ta có  \(\widehat {BAC} = \beta \) là một góc nhọn. Do đó khi quay các cạnh của tứ diện xung quanh cạnh AB thì cạnh AC tạo thành một hình nón tròn xoay đỉnh A có trục là AB, còn cạnh BC tạo thành đáy của hình nón.

Như vậy khi quay tất cả các cạnh của tứ diện xung quanh trục AB thì các cạnh BD và AC tạo thành hai hình nón.

Chọn A.

Câu 43: Trắc nghiệm ID: 150770

Cho hàm số \(y = {{x + 3} \over {1 - x}}\). Mệnh đề nào sau đây sai ?

Xem đáp án

\(y = \dfrac{{x + 3}}{{1 - x}}\)

TXĐ: \(\)\(D = \mathbb{R}\backslash \left\{ 1 \right\}\)

\(y' = \frac{{3.1 - 1.\left( { - 1} \right)}}{{{{\left( {1 - x} \right)}^2}}} = \frac{4}{{{{\left( {1 - x} \right)}^2}}} > 0,\) \(\forall x \ne 1\)

Vậy hàm số đồng biến trên  \(\left( { - \infty ,1} \right)\) và \(\left( {1, + \infty } \right)\)

Câu 44: Trắc nghiệm ID: 150771

Xem đáp án

\(y = \dfrac{{{x^4}}}{4} + 2x - 3\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = {x^3} + 4x\\y' = 0 \Leftrightarrow {x^3} + 4x = 0\\ \Leftrightarrow x = 0\end{array}\)

Hàm số đồng biến trên\(\left( {0, + \infty } \right)\)

Câu 45: Trắc nghiệm ID: 150772

Tập nghiệm của bất phương trình \({\log _{{1 \over 2}}}(2x - 2) > {\log _{{1 \over 2}}}(x + 1)\) là:

Xem đáp án

Điều kiện: \(x > 1.\)

Ta có: \({\log _{\dfrac{1}{2}}}(2x - 2) > {\log _{\dfrac{1}{2}}}(x + 1)\)

\(\Leftrightarrow 2x - 2 < x + 1\)

\( \Leftrightarrow x < 3\)

Kết hợp điều kiện: \(x \in \left( {1;3} \right)\)

Chọn đáp án B.

Câu 46: Trắc nghiệm ID: 150773

Nghiệm của phương trình \({\log _2}({\log _4}x) = 1\) là:

Xem đáp án

Điều kiện: \(\left\{ \begin{array}{l}{\log _4}x > 0\\x > 0\end{array} \right. \Leftrightarrow x > 1\)

Ta có: \({\log _2}({\log _4}x) = 1 \Leftrightarrow {\log _4}x = 2 \)

\(\Leftrightarrow x = {4^2} = 16.\)

Chọn đáp án A.

Câu 47: Trắc nghiệm ID: 150774

Cho \(f(x) \ge g(x),\forall x \in [a;b]\). Hình phẳng S1 giới hạn bởi đường  y = f(x), y = 0, x = a, x = b (a<b) đem quay quanh Ox có thể tích V1. Hình phẳng S2 giới hạn bởi đường  y = g(x), y = 0, x = a, x = b  đem quay quanh Ox có thể tích V2. Lựa chọn phương án đúng.

Xem đáp án

Ta có:

+ \({V_1} = \pi \int\limits_a^b {{f^2}\left( x \right)} \,dx\)

+ \({V_2} = \pi \int\limits_a^b {{g^2}\left( x \right)} \,dx\)

Nếu V1 = V2 thì chưa chắc ta có: \(f(x) = g(x),\forall x \in [a;b]\).

Chọn đáp án D.

Câu 48: Trắc nghiệm ID: 150775

Diện tích hình phẳng giới hạn bởi các đường : \(y = {x^2}\,,\,y = \dfrac{{{x^2}}}{8},\,\,y = \dfrac{{27}}{x}\) là:

Xem đáp án

Phương trình hoành độ giao điểm của các đồ thị

\(\left\{ \begin{array}{l}{x^2} = \dfrac{{{x^2}}}{8}\\{x^2} = \dfrac{{27}}{x}\\\dfrac{{{x^2}}}{8} = \dfrac{{27}}{x}\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 0\\x = 2\\x = 3\end{array} \right.\)

Khi đó diện tích hình phẳng được xác định bằng công thức:

\(S = \int\limits_0^2 {\left( {{x^2} - \dfrac{{x{}^2}}{8}} \right)} \,dx + \int\limits_2^3 {\left( {{x^2} - \dfrac{{27}}{x}} \right)\,dx}  \)

\(= \dfrac{7}{8}\left( {\dfrac{{{x^3}}}{3}} \right)\left| \begin{array}{l}^2\\_0\end{array} \right. + \left( {\dfrac{{{x^3}}}{3} - 27\ln \left| x \right|} \right)\left| \begin{array}{l}^3\\_2\end{array} \right.\)

\( = \dfrac{7}{8}\left( {\dfrac{8}{3}} \right) + \left( {9 - 27\ln 3 - \dfrac{8}{3} + 27\ln 2} \right)\)

\(= 26 - 27\ln \dfrac{3}{2}\)

Câu 49: Trắc nghiệm ID: 150776

Chọn phương án đúng.

Xem đáp án

+ \(\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\sin }^2}x}}}  =  - \cot x\left| {_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} =  - 1 - } \right.1 \)\(\,=  - 2.\) sai vì hàm số không liên tục

+ \(\int\limits_2^1 {dx}  = 1 =  - \int\limits_1^2 {dx}  =  - \left( x \right)\left| \begin{array}{l}^2\\_1\end{array} \right. \)\(\,=  - \left( {2 - 1} \right) =  - 1.\)

+ \(\int\limits_{ - e}^e {\dfrac{{dx}}{x}}  = \ln \left| x \right|\left| \begin{array}{l}^e\\_{ - e}\end{array} \right.\)\(\, = \ln \left| e \right| - \ln \left| { - e} \right| = 0.\)

Chọn đáp án D.

Câu 50: Trắc nghiệm ID: 150777

Cho điểm \(M\left( {1;2; - 3} \right)\), khoảng cách từ điểm \(M\)đến mặt phẳng \(\left( {Oxy} \right)\) bằng

Xem đáp án

Với \(M\left( {a;b;c} \right) \Rightarrow d\left( {M,\left( {Oxy} \right)} \right) = \left| c \right|\)

Chọn D

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »