Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Trương Vĩnh Ký

Đề thi thử THPT QG năm 2022 môn Toán

  • Hocon247

  • 50 câu hỏi

  • 90 phút

  • 64 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 150928

Cho  hàm số \(f(x) = 2x + m + {\log _2}[m{x^2} - 2(m - 2)x + 2m - 1]\) ( m là tham số). Tìm tất cả các giá trị của m để hàm số \(f(x)\) xác định với mọi \(x \in R\).

Xem đáp án

Hàm số \(f\left( x \right)\) xác định với mọi \(x \in R\) khi và chỉ khi \(m{x^2} - 2\left( {m - 2} \right)x + 2m - 1 > 0 \forall x \in \mathbb{R}\)

+ Với \(m = 0\) ta có: \(4x - 1 > 0\) (không thỏa mãn)

+ Với \(m \ne 0\), ta có: \(m{x^2} - 2\left( {m - 2} \right)x + 2m - 1 > 0 \forall x \in \mathbb{R}\)

\(\Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta ' =  - {m^2} - 3m + 4 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m > 1\\m <  - 4\end{array} \right.\end{array} \right. \Leftrightarrow m > 1\)

Chọn đáp án B.

Câu 2: Trắc nghiệm ID: 150929

Số nghiệm của phương trình  \({\log _3}({x^3} - 3x) = \dfrac{1}{2}\) là:

Xem đáp án

Điều kiện: \({x^3} - 3x > 0\)

Ta có: \({\log _3}({x^3} - 3x) = \dfrac{1}{2}\)

\(\Leftrightarrow \left( {{x^3} - 3x} \right) = {3^{\dfrac{1}{2}}}\)

Dùng máy tính giải phương trình, so sánh điều kiện phương trình có 1 nghiệm.

Chọn đáp án D.

Câu 3: Trắc nghiệm ID: 150930

Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây :

Xem đáp án

Điều kiện: \(x \le 2\)

Xét hương trình hoành độ giao điểm ta có:

\(\sqrt {2 - x}  = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\2 - x = {x^2}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} + x - 2 = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\\left[ \begin{array}{l}x =  - 2\\x = 1\end{array} \right.\end{array} \right. \Rightarrow x = 1\)

Khi đó, thể tích khối tròn xoay cần tính được xác được bởi công thức: \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} } \)

Chọn đáp án D.

Câu 4: Trắc nghiệm ID: 150931

Họ nguyên hàm của hàm số \(f(x) = \dfrac{{\sin x}}{{{{\cos }^2}x}}\) là

Xem đáp án

Ta có: \(\int {\dfrac{{\sin x}}{{{{\cos }^2}x}}} \,dx =  - \int {\dfrac{1}{{{{\cos }^2}x}}} \,d\left( {\cos x} \right)\)\(\, = \dfrac{1}{{\cos x}} + C.\)

Chọn đáp án D.

Câu 5: Trắc nghiệm ID: 150932

Đồ thị sau đây là của hàm số nào?

 

Xem đáp án

Đths có TCĐ: \(x =  - 1\) nên loại A, C.

Đths đi qua điểm \(\left( {0; - 1} \right)\) nên chỉ có D thỏa mãn.

Câu 6: Trắc nghiệm ID: 150933

Đồ tị hàm số \(y = {x^3} - 3{x^2} + 1\) cắt đường thẳng y = m tại ba điểm phân biệt thì tất cả các giá trị tham số m thỏa mãn là

Xem đáp án

\(y = {x^3} - 3{x^2} + 1\)

\(TXD:D = R\)

\(\begin{array}{l}y' = 3{x^2} - 6x\\y' = 0 \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Từ BBT  ta có đồ thị hàm số \(y = {x^3} - 3{x^2} + 1\) cắt đường thẳng \(y = m\)  tại 3 điểm phân biệt

\( \Rightarrow  - 3 < m < 1\)

Câu 7: Trắc nghiệm ID: 150934

Mệnh đề nào sau đây là mệnh đề  đúng?

Số các cạnh của một hình đa diện luôn:

Xem đáp án

Tứ diện là hình đa diện đơn giản nhất có cạnh bằng 6 nên số cạnh của hình đa diện luôn lớn hơn hoặc bằng 6.

Chọn D.

Câu 8: Trắc nghiệm ID: 150935

Trong các mệnh đề sau, mệnh đề nào sai? 

Xem đáp án

- Khối lăng trụ tam giác, khối hộplà các khối đa diện.

- Khối tứ diện là một khối đa diện lồi.

- Không phải khi nào lắp ghép 2 khối đa diện ta cũng được khối đa diện lồi.

Chọn C.

Chú ý khi giải:

Một số em sẽ nghĩ đáp án C là đúng nhưng thực chất khi lắp ghép hai khối đa diện ta chưa chắc đã nhận được khối đa diện lồi.

Câu 9: Trắc nghiệm ID: 150936

Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) và cạnh \(BD\) vuông góc với cạnh \(BC\). Khi quay các cạnh tứ diện đó xung quanh trục là cạnh \(AB\), có bao nhiêu hình nón được tạo thành?

Xem đáp án

Khi quay quanh cạnh AB thì ta có một hình chóp đỉnh B, đáy là đường tròn tâm A, bán kính AD.

Tiếp tục ta có \(BD \bot BC,\,DA \bot BC \Rightarrow BC \bot AB\)

Vậy khi quay quanh AB, ta có thêm hình chóp đỉnh A đáy là đường tròn tâm B bán kính BC.

Chọn B.

Câu 10: Trắc nghiệm ID: 150937

Trong không gian với hệ trục tọa độ \(Oxyz\), gọi \((P)\)là mặt phẳng song song với mặt phẳng \(Oxz\) và cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\)theo đường tròn có chu vi lớn nhất. Phương trình của \((P)\) là:

Xem đáp án

Phương pháp tự luận

Mặt phẳng \((P)\) cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\) theo đường tròn có chu vi lớn nhất nên mặt phẳng \((P)\) đi qua tâm \(I(1; - 2;0)\).

Phương trình mặt phẳng \((P)\) song song với mặt phẳng \(Oxz\) có dạng :\(Ay + B = 0\)

 Do \((P)\) đi qua tâm \(I(1; - 2;0)\)có phương trình dạng: \(y + 2 = 0\).

Phương pháp trắc nghiệm

+) Mặt phẳng \((P)\) song song với mặt phẳng \(Oxz\) nên lọai đáp án D.

+) Mặt phẳng \((P)\)đi qua tâm \(I(1; - 2;0)\)nên thay tọa độ điểm \(I\)vào các phương trình loại được đáp án B,C.

Câu 11: Trắc nghiệm ID: 150938

Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z| = 3\) là:

Xem đáp án

Đặt z = x + yi

\(\begin{array}{l}\left| z \right| = 3 \Rightarrow \left| {x + yi} \right| = 3\\ \Rightarrow \sqrt {{x^2} + {y^2}}  = 3\end{array}\)

Tập hợp biểu diễn số phức z là đường tròn tâm 0( 0, 0), bán kính bằng 3

Câu 12: Trắc nghiệm ID: 150939

Tích của hai số phức \({z_1} = 3 + 2i\,,\,\,{z_2} = 2 - 3i\) là;

Xem đáp án

Với z1= 3 + 2i , z2= 2 – 3i

\({z_1}.{z_2} = \left( {3 + 2i} \right)\left( {2 - 3i} \right) \)\(\,= 6 - 5i - 6{i^2} = 12 - 5i\)

Câu 13: Trắc nghiệm ID: 150940

Hàm số \(y =  - {x^3} + 3x - 5\) đồng biến trên khoảng nào ?

Xem đáp án

\(y =  - {x^3} + 3x - 5\)

\(TXD:D = R\)

\(\begin{array}{l}y' =  - 3{x^2} + 3\\y' = 0 \Leftrightarrow  - 3{x^2} + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\)

Đồng biến trên \((-1,1) .\) 

Câu 14: Trắc nghiệm ID: 150941

Trong các hàm số sau, hàm số nào luôn nghịch biến trên R ?

Xem đáp án

Đáp án A: \(y' = \cos x - 1 \le 0,\forall x \in \mathbb{R}\) vì \(\cos x \le 1\) với mọi \(x \in \mathbb{R}\)

Vậy hàm số \(y = \sin x - x\) luôn nghịch biến trên \(\mathbb{R}\)

Câu 15: Trắc nghiệm ID: 150942

Cho a, b là các số thực dương, thỏa mãn \({a^{{3 \over 4}}} > {a^{{4 \over 5}\,\,\,}}\,\,,\,\,\,{\log _b}{1 \over 2} < {\log _b}{2 \over 3}\). Mệnh đề nào sau đây đúng ?

Xem đáp án

Ta có: \({a^{\dfrac{3}{4}}} > {a^{\dfrac{4}{5}\,\,\,}}\,\, \Rightarrow 0 < a < 1\,\); \(\,\,{\log _b}\dfrac{1}{2} < {\log _b}\dfrac{2}{3} \Rightarrow b > 1\)

Chọn đáp án C.

Câu 16: Trắc nghiệm ID: 150943

Bất phương trình sau \({\log _{{1 \over 3}}}{\log _4}({x^2} - 5) > 0\) có tập nghiệm là:

Xem đáp án

Điều kiện: \({x^2} - 5 > 0\)

Ta có: \({\log _{\dfrac{1}{3}}}{\log _4}({x^2} - 5) > 0\)

\(\Leftrightarrow 0 < {\log _4}({x^2} - 5) < 1\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 5 < 4\\{x^2} - 5 > 1\end{array} \right. \)

\(\Leftrightarrow \)\(x \in ( - 3; - \sqrt 6 ) \cup (\sqrt 6 ;3)\)

Chọn đáp án A.

Câu 17: Trắc nghiệm ID: 150944

Cho hình nón có đỉnh \(S\), độ dài đường sing bằng \(2a\). Một mặt phẳng qua đỉnh \(S\) cắt hình nón theo một thiết diện, diện tích lớn nhất của thiết diện là

Xem đáp án

Chiều cao của hình nón là: \(h = \sqrt {{l^2} - {r^2}}  = \sqrt {{{\left( {2a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}}  \)\(\,= a\sqrt 2 \)

Thiết diện lớn nhất đi qua S và trục của hình nón có diện tích là:

\(S = \dfrac{1}{2}h.2r = \dfrac{1}{2}a\sqrt 2 .2.a\sqrt 2  = 2{a^2}\)

Chọn A

Câu 18: Trắc nghiệm ID: 150945

Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:

Xem đáp án

Phương pháp tự luận:

+) Gọi \(H,K\)lần lượt là hình chiếu vuông góc của  \(M\)trên mặt phẳng\((\alpha )\) và trục \(Oy\).

Ta có : \(K(0;2;0)\)

\(d(M,(\alpha )) = MH \le MK\)

Vậy khoảng cách từ \(M\) đến mặt phẳng\((\alpha )\) lớn nhất khi mặt phẳng\((\alpha )\)qua \(K\) và vuông góc với\(MK\).

Phương trình mặt phẳng: \(x + 3z = 0\)

Câu 19: Trắc nghiệm ID: 150946

Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).

Xem đáp án

Ta có:\(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \)\(\, = \int {\left( {2{x^2} - {x^{ - \dfrac{1}{3}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)dx} \)\(\,= \dfrac{2}{3}{x^3} - \dfrac{3}{2}{x^{\dfrac{2}{3}}} - \tan x + C\)

Chọn đáp án B.

Câu 20: Trắc nghiệm ID: 150947

Diện tích hình phẳng giới hạn bởi \(y = {x^2} - x + 3,\,\,y = 2x + 1\) là:

Xem đáp án

Phương trình hoành độ giao điểm \({x^2} - x + 3 = 2x + 1 \Leftrightarrow {x^2} - 3x + 2 = 0\)

\( \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\).

Diện tích hình phẳng giới hạn bởi hai đồ thì được xác định bằng công thức

\(\begin{array}{l}S = \int\limits_1^2 {\left| {\left( {{x^2} - x + 3} \right) - \left( {2x + 1} \right)} \right|\,dx} \\ = \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|} \,dx\\ = \left| {\dfrac{{{x^3}}}{3} - \dfrac{3}{2}{x^2} + 2x} \right|\left| \begin{array}{l}^2\\_1\end{array} \right.\\ = \left| {\dfrac{2}{3} - \dfrac{5}{6}} \right| = \dfrac{1}{6}.\end{array}\)

Chọn đáp án C.

Câu 21: Trắc nghiệm ID: 150948

Phép đối xứng qua mặt phẳng biến một điểm thuộc mặt phẳng đó thành:

Xem đáp án

Phép đối xứng qua mặt phẳng (P) là phép biến hình biến mỗi điểm thuộc (P) thành chính nó.

Chọn D.

Câu 22: Trắc nghiệm ID: 150949

Phép dời hình biến đoạn thẳng thành:

Xem đáp án

Phép dời hình bảo toàn khoảng cách giữa 2 điểm nên đoạn thẳng sẽ có độ dài bằng đoạn thẳng đã cho.

Chọn A.

Câu 23: Trắc nghiệm ID: 150950

Cho hàm số \(y = {x^4} - 4{x^2} + 3\). Mệnh đề nào dưới đây sai ?

Xem đáp án

Ta có: \(y' = 4{x^3} - 8x = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm \sqrt 2 \end{array} \right.\)

Do đó hàm số có 3 điểm cực trị nên A sai.

Câu 24: Trắc nghiệm ID: 150951

Cho hàm số y = f(x) có bảng biến thiên như sau:

Khẳng định nào sau đây đúng ?

Xem đáp án

Hàm số đạt cực tiểu tại x=4, đạt cực đại tại x=2 nên chỉ có D đúng.

Câu 25: Trắc nghiệm ID: 150952

Nếu x > y > 0 thì \({{{x^y}{y^x}} \over {{y^y}{x^x}}}\) bằng :

Xem đáp án

Ta có: \(\dfrac{{{x^y}{y^x}}}{{{y^y}{x^x}}} = {\left( {\dfrac{x}{y}} \right)^y}.{\left( {\dfrac{y}{x}} \right)^x}\)\(\, = {\left( {\dfrac{x}{y}} \right)^y}{\left( {\dfrac{x}{y}} \right)^{ - x}} = {\left( {\dfrac{x}{y}} \right)^{y - x}}\)

Chọn đáp án C.

Câu 26: Trắc nghiệm ID: 150953

Tìm các điểm cực trị của hàm số \(y = {x^{{4 \over 5}}}{(x - 4)^{2\,}},\,\,x > 0\).

Xem đáp án

Ta có: \(y = {x^{\dfrac{4}{5}}}{(x - 4)^{2\,}}\)

\(\Rightarrow y' = {\left( {{x^{\dfrac{4}{5}}}{{(x - 4)}^{2\,}}} \right)^\prime }\)

\(= \dfrac{4}{5}{x^{\dfrac{{ - 1}}{5}}}{\left( {x - 4} \right)^2} + {x^{\dfrac{4}{5}}}\left( {2x - 8} \right)\)

\( = {x^{\dfrac{{ - 1}}{5}}}\left( {x - 4} \right)\left( {\dfrac{4}{5}\left( {x - 4} \right) + 2x} \right)\)

\(= {x^{\dfrac{{ - 1}}{5}}}\left( {x - 4} \right)\left( {\dfrac{{14}}{5}x - \dfrac{{16}}{5}} \right)\)

Các điểm cực trị là \(x = 4\) và \(x = \dfrac{8}{7}\)   

Chọn đáp án A.

Câu 27: Trắc nghiệm ID: 150954

Hàm số y = sinx là một nguyên hàm của hàm số nào sau đây ?

Xem đáp án

Ta có: \(\int {\left( { - \cos x} \right)} \,dx = \sin x + C.\)

Chọn đáp án A.

Câu 28: Trắc nghiệm ID: 150955

Tính nguyên hàm \(\int {\dfrac{{{{\left( {3\ln x + 2} \right)}^4}}}{x}\,dx} \) ta được:

Xem đáp án

Ta có:

\(\begin{array}{l}\int {\dfrac{{{{\left( {3\ln x + 2} \right)}^4}}}{x}\,dx} \\ = \int {\left( {{{\left( {3\ln x + 2} \right)}^4}} \right)} \,d\left( {\ln x} \right)\\ = \dfrac{1}{3}\int {\left( {{{\left( {3\ln x + 2} \right)}^4}} \right)} \,d\left( {3\ln x + 2} \right)\\ = \dfrac{1}{3}.\dfrac{{{{\left( {3\ln 2 + 2} \right)}^5}}}{5} = \dfrac{{{{\left( {3\ln 2 + 2} \right)}^5}}}{{15}} + C.\end{array}\)

Chọn đáp án B.

Câu 29: Trắc nghiệm ID: 150956

Phương trình \({z^2} + 4z + 13 = 0\)có các nghiệm là;

Xem đáp án

\(\begin{array}{l}{z^2} + 4z + 13 = 0\\ \Leftrightarrow \left( {{z^2} + 4z + 4} \right) + 9 = 0\\ \Leftrightarrow {\left( {z + 2} \right)^2} =  - 9\\ \Rightarrow {\left( {z + 2} \right)^2} = 9{i^2}\\ \Rightarrow \left[ \begin{array}{l}z + 2 = 3i\\z + 2 =  - 3i\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z =  - 2 + 3i\\z =  - 2 - 3i\end{array} \right.\end{array}\)

Câu 30: Trắc nghiệm ID: 150957

Phép dời hình biến đường thẳng thành:

Xem đáp án

Phép dời hình biến đường thẳng thành đường thẳng.

Chọn D.

Chú ý khi giải:

Một số em sẽ chọn đáp án C vì không đọc kỹ đáp án.

Câu 31: Trắc nghiệm ID: 150958

Trong các kí hiệu sau, kí hiệu nào không phải của khối đa diện đều?

Xem đáp án

Có 5 khối đa diện, đó các loại \(\left\{ {3;3} \right\},\left\{ {4;3} \right\},\left\{ {3;4} \right\},\left\{ {5;3} \right\},\left\{ {3;5} \right\}\)

Vậy kí hiệu \(\left\{ {4;4} \right\}\) không phải kí hiệu của khối đa diện đều nào cả.

Chọn D.

Câu 32: Trắc nghiệm ID: 150959

Cho hình nón có thiết diện qua trục là một tam giác đều. Khai triển hình nón theo một đường sinh, ta được một hình quạt tròn có góc ở tâm là \(\alpha \). Trong các kết luận sau, kết luận nào đúng ?

Xem đáp án

Gọi hình nón có bán kính đáy là r

Đọ dài đường sinh là \(l = 2r\)

Khi đó,  khai triển hình nón theo đường sinh ta được hình quạt có bán kính \(R = l = 2r\)  và độ dài cung tròn là: \(L = C = 2\pi r\)

Mặt khác: \(L = \alpha R \Rightarrow \alpha  = \dfrac{{2\pi r}}{{2r}} = \pi \)

Chọn D.

Câu 33: Trắc nghiệm ID: 150960

Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), điểm \(A\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\) và cắt mặt cầu \(\left( S \right)\) theo thiết diện là hình tròn \(\left( C \right)\)có diện tích nhỏ nhất ?

Xem đáp án

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {1,2,3} \right),R = 3\).

Ta có \(IA < R\) nên điểm \(A\)nằm trong mặt cầu.

Ta có : \(d\left( {I,\left( P \right)} \right) = \sqrt {{R^2} - {r^2}} \)

Diện tích hình tròn \(\left( C \right)\) nhỏ nhất \( \Leftrightarrow \)\(r\)nhỏ nhất \( \Leftrightarrow d\left( {I,\left( P \right)} \right)\) lớn nhất.

Do \(d\left( {I,\left( P \right)} \right) \le IA\)\( \Rightarrow \max d\left( {I,\left( P \right)} \right) = IA\) Khi đó mặt phẳng\(\left( P \right)\) đi qua \(A\) và nhận \(\overrightarrow {IA} \) làm vtpt

\( \Rightarrow \left( P \right):x + 2y + z - 2 = 0\)

Câu 34: Trắc nghiệm ID: 150961

Nếu \(P = {S \over {{{(1 + k)}^n}}}\) thì n bằng:

Xem đáp án

Ta có: \(P = \dfrac{S}{{{{(1 + k)}^n}}} \)

\(\Rightarrow {(1 + k)^n} = \dfrac{S}{P}\)

\(\Leftrightarrow n = {\log _{k + 1}}\left( {\dfrac{S}{P}} \right) = \dfrac{{\log \dfrac{S}{P}}}{{\log (1 + k)}}\)

Chọn đáp án A

Câu 35: Trắc nghiệm ID: 150962

Viết các số theo thứ tự tăng dần: \({\left( {{1 \over 3}} \right)^0}\,,\,\,{\left( {{1 \over 3}} \right)^{ - 1}},\,\,{\left( {{1 \over 3}} \right)^\pi },\,\,{\left( {{1 \over 3}} \right)^{\sqrt 2 }}\).

Xem đáp án

Thứ tự tăng dần là \({\left( {\dfrac{1}{3}} \right)^\pi },\,\,{\left( {\dfrac{1}{3}} \right)^{\sqrt 2 }},\,{\left( {\dfrac{1}{3}} \right)^0},\,\,{\left( {\dfrac{1}{3}} \right)^{ - 1}}\)

Chọn đáp án A.

Câu 36: Trắc nghiệm ID: 150963

Diện tích hình phẳng giới hạn bởi \(y = \left( {e + 1} \right)x\,,\,\,y = \left( {{e^x} + 1} \right)x\) là:

Xem đáp án

Phương trình hoành độ giao điểm là: \(\left( {e + 1} \right)x\, = \left( {{e^x} + 1} \right)x \)

\(\Leftrightarrow x\left( {{e^x} + 1 - e - 1} \right) = 0\)

\( \Leftrightarrow x\left( {{e^x} - e} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).

Khi đó, diện tích hình phẳng được giới hạn bởi hai đồ thị là:

\(\begin{array}{l}S = \int\limits_0^1 {\left| {\left( {{e^x} + 1} \right)x - \left( {e + 1} \right)x} \right|\,dx} \\\,\,\,\, = \int\limits_0^1 {\left| {{e^x}x - ex} \right|\,dx}  = \int\limits_0^1 {\left( {ex - {e^x}x} \right)} \,dx\\\,\,\,\, = \left( {\dfrac{{e{x^2}}}{2}} \right)\left| \begin{array}{l}^1\\_0\end{array} \right. - \int\limits_0^1 {{e^x}xdx} \end{array}\)

Đặt \(I = \int\limits_0^1 {{e^x}x\,dx} \)

Ta có: \(\begin{array}{l}I = \int\limits_0^1 {{e^x}x\,dx}  = \int\limits_0^1 {x\,d\left( {{e^x}} \right)} \\\,\,\, = \left( {x.{e^x}} \right)\left| {_0^1} \right. - \int\limits_0^1 {{e^x}} dx\\\,\,\, = e - \left( {{e^x}} \right)\left| {_0^1} \right. = e - \left( {e - 1} \right) = 1\end{array}\)

Khi đó: \(S = \dfrac{e}{2} - 1 = \dfrac{{e - 2}}{2}.\)

Chọn đáp án C.

Câu 37: Trắc nghiệm ID: 150964

Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a  < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?

Xem đáp án

Áp dụng khái niệm của tích phân: Xét \(f\left( x \right)\) là một hàm số liên tục trê đoạn \(\left[ {a;b} \right]\), ( với \(a < b\)) và \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\) ta có\(\int\limits_a^b f (x)\,dx = F(b) - F(a)\).

Chọn đáp án D.

Câu 38: Trắc nghiệm ID: 150965

Cho đồ thị (C): \(y = {x^4} - 2{x^2}\). Khẳng định nào sau đây là sai ?

Xem đáp án

Cho x=0 thì y=0 nên đồ thị hàm số chỉ cắt trục Oy tại 1 điểm duy nhất.

Câu 40: Trắc nghiệm ID: 150967

Trong không gian với hệ toạ độ \(Oxyz\), cho điểm \(N\left( {1;1;1} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) cắt các trục \(Ox,Oy,Oz\) lần lượt tại \(A,B,C\)  (không trùng với gốc tọa độ\(O\)) sao cho \(N\) là tâm đường tròn ngoại tiếp tam giác \(ABC\)

Xem đáp án

Gọi \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) lần lượt là giao điểm của \(\left( P \right)\) với các trục \(Ox,Oy,Oz\)

\( \Rightarrow \)\(\left( P \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\left( {a,b,c \ne 0} \right)\)

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{N \in \left( P \right)}\\{NA = NB}\\{NA = NC}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 1}\\{\left| {a - 1} \right| = \left| {b - 1} \right|}\\{\left| {a - 1} \right| = \left| {c - 1} \right|}\end{array}} \right. \)

\(\Leftrightarrow a = b = c = 3 \Rightarrow x + y + z - 3 = 0\)

Câu 41: Trắc nghiệm ID: 150968

Cho \(f(x) = \dfrac{{4m}}{\pi } + {\sin ^2}x\). Tìmmđể nguyên hàm F(x) của hàm số f(x)  thỏa mãn F(0) = 1 và \(F\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{8}\).

Xem đáp án

Ta có:

\(\int {\left( {\dfrac{{4m}}{\pi } + {{\sin }^2}x} \right)\,dx}  \)

\(= \int {\left( {\dfrac{{4m}}{\pi } + \dfrac{{1 - \cos 2x}}{2}} \right)} \,dx \)

\(= \int {\left( {\dfrac{{8m + \pi }}{{2\pi }} - \dfrac{{\cos 2x}}{2}} \right)\,dx} \)

\( = \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right)x - \dfrac{1}{4}\int {\cos 2x\,d\left( {2x} \right)}\)

\(  = \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right)x - \dfrac{{\sin 2x}}{4} + C\)

Theo giả thiết ta có:

+ \(F\left( 0 \right) = 1 \Rightarrow C = 1\)

+ \(F\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{8}\)

\(\Rightarrow \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right).\dfrac{\pi }{4} - \dfrac{1}{4} + 1 = \dfrac{\pi }{8}\)

\( \Leftrightarrow \dfrac{{8m + \pi }}{8} = \dfrac{\pi }{8} - \dfrac{3}{4} = \dfrac{{\pi  - 6}}{8} \)

\(\Leftrightarrow 8m =  - 6 \Rightarrow m =  - \dfrac{3}{4}\).

Chọn đáp án A.

Câu 42: Trắc nghiệm ID: 150969

Cho hàm số \(y = {x^2}{e^{ - x}}\). Khẳng định nào sau đây là đúng ?

Xem đáp án

Ta có: \(y = {x^2}{e^{ - x}}\)

\(\Rightarrow y' = {\left( {{x^2}{e^{ - x}}} \right)^\prime }\)\(\, = 2x{e^{ - x}} - {x^2}{e^{ - x}}\)

\(y' = 0 \Leftrightarrow x{e^{ - x}}\left( {2 - x} \right) = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)

+ Hàm số có \(x = 0\) là điểm cực tiểu, \(x = 2\) là điểm cực đại.

Chọn đáp án D.

Câu 43: Trắc nghiệm ID: 150970

Cho hàm số f(x) có đạo hàm trên R. Nếu hàm số f(x) đồng biến trên R thì

Xem đáp án

Nếu hàm số f(x) đồng biến trên R thì f'(x) \(\ge 0\) trên R.

Câu 44: Trắc nghiệm ID: 150971

Cho đồ thị (C): \(y = \dfrac{{4x - 1} }{{x + 1}}\). Tọa độ tâm đối xứng của (C) là

Xem đáp án

\(y = \dfrac{{4x - 1}}{{x + 1}}\)

TXĐ: D=R\{1}

\(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{4x - 1}}{{x + 1}} = 4\)  nên TCN: y=4

\(\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \dfrac{{4x - 1}}{{x + 1}} =  + \infty \\\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \dfrac{{4x - 1}}{{x + 1}} =  - \infty \end{array} \right\} \)\(\,\Rightarrow   TCĐ: x= -1\)

\( \Rightarrow \) tâm đối xứng I(-1,4)

Câu 45: Trắc nghiệm ID: 150972

Khối đa diện đều có 20 mặt thì có bao nhiêu cạnh?

Xem đáp án

Khối đa diện mười hai mặt đều thuộc loại \(\left\{ {3;5} \right\}\) nên mỗi mặt có 3 cạnh

Mỗi cạnh là cạnh chung của 2 mặt nên tổng số cạnh của đa diện là \(20.3:2 = 30\)  (cạnh)

Chọn C.

Chú ý khi giải:

Một số em sẽ chọn nhầm đáp án D vì quên không chia cho 2 (mỗi cạnh lặp lại 2 lần).

Câu 46: Trắc nghiệm ID: 150973

Một hình thang vuông \(ABCD\) có đường cao \(AD = a\), đáy lớn \(CD = 2a\). Cho hình thang đó quay quanh \(CD\), ta được khối tròn xoay có thể tích bằng

Xem đáp án

Thể tich khối tròn xoay tạo ra khi quay hình thang ABCD quanh trục CD là:

\(V = \dfrac{1}{3}a.\pi {a^2} + a.\pi {a^2} = \dfrac{4}{3}\pi {a^3}\)

Chọn A.

Câu 47: Trắc nghiệm ID: 150974

Trong không gian với hệ toạ độ \(Oxyz\), viết phương trình mặt phẳng \(\left( P \right)\) đi qua hai điểm \(A(1;1;1)\), \(B\left( {0;2;2} \right)\) đồng thời cắt các tia \(Ox,Oy\) lần lượt tại hai điểm \(M,N\) (không trùng với gốc tọa độ\(O\)) sao cho \(OM = 2ON\)

Xem đáp án

Gọi \(M\left( {a;0;0} \right),N\left( {0;b;0} \right)\) lần lượt là giao điểm của \(\left( P \right)\) với các tia \(Ox,Oy\)\(\left( {a,b > 0} \right)\)

Do \(OM = 2ON\)\( \Leftrightarrow a = 2b\)\( \Rightarrow \overrightarrow {MN} \left( { - 2b;b;0} \right) =  - b\left( {2; - 1;0} \right)\) .Đặt \(\overrightarrow u \left( {2; - 1;0} \right)\)

Gọi \(\overrightarrow n \) là môt vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\( \Rightarrow \)\(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow {AB} } \right] = \left( { - 1;2;1} \right)\)

Phương trình măt phẳng \(\left( P \right):x - 2y - z + 2 = 0\).

Câu 48: Trắc nghiệm ID: 150975

Cho hàm số y = f(x) có đạo hàm trên (a ; b). Nếu f’(x) đổi dấu từ âm sang dương qua điểm x0 thì

Xem đáp án

Nếu f’(x) đổi dấu từ âm sang dương qua điểm x0 thì x0 là điểm cực tiểu của hàm số.

Câu 49: Trắc nghiệm ID: 150976

Cho phương trình \({5^{x - 1}} = {\left( {{1 \over {25}}} \right)^x}\).  Nghiệm của phương trình này nằm trong khoảng nào dưới đây ?

Xem đáp án

Ta có: \({5^{x - 1}} = {\left( {\dfrac{1}{{25}}} \right)^x} \)

\(\Leftrightarrow {5^{x - 1}} = 5{}^{ - 2x} \)

\(\Leftrightarrow x - 1 =  - 2x\)

\(\Leftrightarrow x = \dfrac{1}{3}.\)

Chọn đáp án A.

Câu 50: Trắc nghiệm ID: 150977

Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao h, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:

Xem đáp án

Gọi \(O = AC \cap BD\).

Vì chóp \(S.ABCD\) đều nên \(SO \bot \left( {ABCD} \right)\)

Đặt \(SA = SB = SC = SD = a\)

Tam giác \(SCD\) có:\(SC = SD;\widehat {CSD} = {60^0} \Rightarrow \Delta SCD\)đều\( \Rightarrow CD = SC = SD = a\)

\( \Rightarrow \) Hình vuông \(ABCD\) cạnh \(a \Rightarrow AC = BD = a\sqrt 2 \)\( \Rightarrow OC = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\)

\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OC \Rightarrow \Delta SOC\) vuông tại O

\( \Rightarrow SO = \sqrt {S{C^2} - O{C^2}} \)

\(\Rightarrow h = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}}  = \dfrac{{a\sqrt 2 }}{2}\) \( \Rightarrow a = h\sqrt 2 \)

\( \Rightarrow {S_{ABCD}} = {a^2} = {\left( {h\sqrt 2 } \right)^2} = 2{h^2}\)

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}h.2{h^2} = \dfrac{{2{h^3}}}{3}\)

Chọn C.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »