Cho các điểm \(I\left( {1;1; - 2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = - 1 + t\\y = 3 + 2t\\z = 2 + t\end{array} \right.\). Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:
A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 3.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 9.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 9.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 36.\)
Lời giải của giáo viên
Đường thẳng \(d\) đi qua \(M\left( { - 1;{\rm{ 3}};2} \right)\)và có vectơ chỉ phương \(\overrightarrow u = \left( {1;\,2;\,1} \right)\).
Gọi H là hình chiếu của I trên D. Ta có : \(IH = d\left( {I;AB} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {MI} } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \sqrt {18} \)
\( \Rightarrow {R^2} = I{H^2} + {\left( {\dfrac{{AB}}{2}} \right)^2} = 36\).
Vậy phương trình mặt cầu là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 36.\)
Lựa chọn đáp án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\) ?
Tính nguyên hàm \(\int {x\sqrt {a - x} \,dx} \) ta được :
Một khối cầu có diện tích đường tròn lớn là \(2\pi \) thì diện tích của khối cầu đó là
Cho \({\log _2}5 = a,\,{\log _3}5 = b\). Khi đó \({\log _6}5\) tính theo a và b là:
Trên đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn cho số phức z thỏa mãn \({z^2}\) là một số ảo là :
Trong mặt phẳng phức, tìm tập hợp điểm M biểu diễn số phức z thỏa mãn \(|z + 1 - i| \le 3\).
Cho số phức z thỏa mãn \(\overline z = \left( {1 - 3i} \right)\left( { - 2 + i} \right) = 2i\). Tính \(|z|\).
Tìm các số thực x, y thỏa mãn \(\left( {x + 2y} \right) + \left( {2x - 2y} \right)i = 7 - 4i\).
Cho số phức z = 3 + 4i. Giá trị của \(S = 2|z| - 1\) bằng bao nhiêu ?
Cho \(\int\limits_2^5 {f(x)\,dx = 10} \). Khi đó, \(\int\limits_5^2 {[2 - 4f(x)]\,dx} \) có giá trị là:
Thể tích vật thể tròn xoay sinh ra bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi trục Ox và \(y = \sqrt {x\sin x} \,\,(0 \le x \le \pi )\) là:
Cho miền (D) giới hạn bởi các đường sau: \(y = \sqrt x ,\,\,y = 2 - x,\,\,y = 0\). Diện tích của miền (D) có giá tri là:
Cho điểm \(I\left( {1;1; - 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y - 3}}{2} = \dfrac{{z - 2}}{1}\). Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho \(\widehat {IAB} = {30^o}\) là: