Tính nguyên hàm \(\int {x\sqrt {a - x} \,dx} \) ta được :
A. \({\left( {a - x} \right)^{\dfrac{5}{2}}} + ax + C\).
B. \( - \dfrac{2}{5}{\left( {a - x} \right)^{\dfrac{5}{2}}} + ax + C\).
C. \({\left( {a - x} \right)^{\dfrac{5}{2}}} - a + C\).
D. \(\dfrac{2}{5}{\left( {a - x} \right)^{\dfrac{5}{2}}} - \dfrac{2}{3}a{\left( {a - x} \right)^{\dfrac{3}{2}}} + C\).
Lời giải của giáo viên
Đặt \(t = \sqrt {a - x} \Rightarrow {t^2} = a - x \)
\(\Leftrightarrow x = a - {t^2} \Rightarrow dx = - 2t\,dt\)
Khi đó ta có: \(\int {x\sqrt {a - x} \,dx} = - 2\int {\left( {a - {t^2}} \right){t^2}dt\,} \)
\(= - 2\int {\left( {a{t^2} - {t^4}} \right)} \,dt\)\(\, = - 2\left( {\dfrac{{a{t^3}}}{3} - \dfrac{{{t^5}}}{5}} \right) + C \)
\(= \dfrac{2}{5}{t^5} - \dfrac{2}{3}a{t^3} + C \)
\(= \dfrac{2}{5}{\left( {a - x} \right)^{\dfrac{5}{2}}} - \dfrac{2}{3}a{\left( {a - x} \right)^{\dfrac{3}{2}}} + C\)
Chọn đáp án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\) ?
Một khối cầu có diện tích đường tròn lớn là \(2\pi \) thì diện tích của khối cầu đó là
Cho \({\log _2}5 = a,\,{\log _3}5 = b\). Khi đó \({\log _6}5\) tính theo a và b là:
Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn cho số phức z thỏa mãn \({z^2}\) là một số ảo là :
Trong mặt phẳng phức, tìm tập hợp điểm M biểu diễn số phức z thỏa mãn \(|z + 1 - i| \le 3\).
Trên đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
Cho số phức z thỏa mãn \(\overline z = \left( {1 - 3i} \right)\left( { - 2 + i} \right) = 2i\). Tính \(|z|\).
Cho \(\int\limits_2^5 {f(x)\,dx = 10} \). Khi đó, \(\int\limits_5^2 {[2 - 4f(x)]\,dx} \) có giá trị là:
Cho số phức z = 3 + 4i. Giá trị của \(S = 2|z| - 1\) bằng bao nhiêu ?
Cho miền (D) giới hạn bởi các đường sau: \(y = \sqrt x ,\,\,y = 2 - x,\,\,y = 0\). Diện tích của miền (D) có giá tri là:
Thể tích vật thể tròn xoay sinh ra bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi trục Ox và \(y = \sqrt {x\sin x} \,\,(0 \le x \le \pi )\) là:
Cho các điểm \(I\left( {1;1; - 2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = - 1 + t\\y = 3 + 2t\\z = 2 + t\end{array} \right.\). Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:
Cho tứ diện \(ABCD\) có các cạnh \(AB,AC,AD\) đôi một vuông góc với nhau, \(AB = 6a,AC = 7a,AD = 4a\). Gọi \(M,N,P\) lần lượt là trung điểm của các cạnh \(BC,CD,DB\). Thể tích V của tứ diện \(AMNP\) là:
Tìm các số thực x, y thỏa mãn \(\left( {x + 2y} \right) + \left( {2x - 2y} \right)i = 7 - 4i\).