Cho hai số thực b và c \(\left( c>0 \right)\). Kí hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm phức của phương trình \({{z}^{2}}+2bz+c=0\). Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).
A. \({{b}^{2}}=2c\)
B. \(c=2{{b}^{2}}\)
C. \(b=c\)
D. \({{b}^{2}}=c\)
Lời giải của giáo viên
Hai nghiệm của phương trình \({{z}^{2}}+2bz+c=0\) là hai số phức liên hợp với nhau nên hai điểm A, B sẽ đối xứng nhau qua trục Ox.
Do đó, tam giác OAB cân tại O.
Vậy tam giác OAB vuông tại O.
Để ba điểm O, A, B tạo thành tam giác thì hai điểm A, B không nằm trên trục tung, trục hoành. Tức là nếu đặt \(z=x+yi,\left( x,y\in \mathbb{R} \right)\) thì \(\left\{ \begin{array}{l} x \ne 0\\ y \ne 0 \end{array} \right.\left( * \right)\)
Để phương trình \({{z}^{2}}+2bz+c=0\) có hai nghiệm thỏa mãn điều kiện \(\left( * \right)\) thì \({{b}^{2}}-c<0\).
\({{z}^{2}}+2bz+c=0\Leftrightarrow {{\left( z+b \right)}^{2}}+c-{{b}^{2}}=0\)
\(\Leftrightarrow {{\left( z+b \right)}^{2}}={{b}^{2}}-c\Leftrightarrow z=-b\pm i\sqrt{c-{{b}^{2}}}\)
Đặt \(A\left( -b;\sqrt{c-{{b}^{2}}} \right)\) và \(B\left( -b;-\sqrt{c-{{b}^{2}}} \right)\)
Theo đề ta có:
\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow {{b}^{2}}-c+{{b}^{2}}=0\Leftrightarrow 2{{b}^{2}}=c\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tập xác định \(\text{D}\) của hàm số \(y=\frac{1}{\sqrt{2-x}}+\ln \left( x-1 \right)\).
Cho lăng trụ \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) và \(AB=a\), \(AD=a\sqrt{3}\); \(A'O\) vuông góc với đáy \(\left( ABCD \right)\). Cạnh bên \(AA'\) hợp với mặt đáy \(\left( ABCD \right)\) một góc \({{45}^{0}}\). Tính theo \(a\) thể tích \(V\) của khối lăng trụ đã cho.
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=-2{{x}^{3}}+3{{x}^{2}}+1\).
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(a\). Thể tích khối trụ bằng:
Hàm số \(y=\frac{1}{2}{{x}^{4}}-3{{x}^{2}}-3\) nghịch biến trên các khoảng nào ?
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên sau?
Tính giá trị của biểu thức \(P={{\log }_{a}}\left( a.\sqrt[3]{a\sqrt{a}} \right)\) với \(0<a\ne 1.\)
Tìm nguyên hàm của hàm số\(f\left( x \right)={{x}^{3}}\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)\) ?
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;1 \right)\) và mặt phẳng \(\left( P \right):x+2y-2z-1=0.\) Gọi B là điểm đối xứng với A qua \(\left( P \right)\). Độ dài đoạn thẳng AB là
Gọi S là tập hợp tất cả các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có tận cùng là 3 và chia hết cho 7 (làm tròn đến chữ số phần nghìn) có dạng \(\overline{0,\,abc}\). Tính \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}\).
Cho x, y>0 thỏa mãn \(\log \left( x+2y \right)=\log \left( x \right)+\log \left( y \right)\). Khi đó, giá trị nhỏ nhất của biểu thức \(P=\frac{{{x}^{2}}}{1+2y}+\frac{4{{y}^{2}}}{1+x}\) là:
Cho hàm số \(y=\frac{x+2}{x-1}\) có đồ thị (C). Chọn mệnh đề sai?
Cho số phức \(z=-1+3i\). Phần thực và phần ảo của số phức \(w=2i-3\overline{z}\) lần lượt là: