Câu hỏi Đáp án 2 năm trước 43

Gọi S là tập hợp tất cả các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có tận cùng là 3 và chia hết cho 7 (làm tròn đến chữ số phần nghìn) có dạng \(\overline{0,\,abc}\). Tính \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}\).

A. 15

B. 10

C. 17

Đáp án chính xác ✅

D. 18

Lời giải của giáo viên

verified HocOn247.com

Số phần tử của không gian mẫu là: \(n\left( \Omega  \right)={{9.10}^{6}}\)

Gọi A là biến cố: “Số tự nhiên lấy được có tận cùng là 3 và chia hết cho 7”.

Gọi số tự nhiên thỏa mãn biến cố A là X, ta có: \(1\,\,000\,\,013\le X\le 9\,\,999\,\,983\)

Ta thấy số nhỏ nhất mà X có thể nhận được là \(1\,\,000\,\,013\), số lớn nhất mà X có thể nhận là \(9\,\,999\,\,983\)

Chênh lệch giữa hai số liên tiếp thỏa mãn đề bài là 70 đơn vị. Vì vậy ta có thể thấy tập hợp các số tự nhiên X sẽ lập nên một cấp số cộng có số hạng đầu là \({{u}_{1}}=1\,\,000\,\,013\), công sai d=70, số hạng cuối là \(9\,\,999\,\,983\)

Do vậy số các số tự nhiên mà X có thể nhận là: \(\frac{9\,\,999\,\,983-1\,\,000\,\,013}{70}+1=128\,\,572\) (số).

Suy ra \(n\left( A \right)=128\,\,572\). Xác suất của biến cố A là: \(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega  \right)}=\frac{128572}{{{9.10}^{6}}}\approx 0,014\)

Suy ra: \(a=0,\,\,b=1,\,\,c=4\).

Vây \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}=17\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho lăng trụ \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) và \(AB=a\), \(AD=a\sqrt{3}\); \(A'O\) vuông góc với đáy \(\left( ABCD \right)\). Cạnh bên \(AA'\) hợp với mặt đáy \(\left( ABCD \right)\) một góc \({{45}^{0}}\). Tính theo \(a\) thể tích \(V\) của khối lăng trụ đã cho.

Xem lời giải » 2 năm trước 47
Câu 2: Trắc nghiệm

Tìm tập xác định \(\text{D}\) của hàm số \(y=\frac{1}{\sqrt{2-x}}+\ln \left( x-1 \right)\).

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=-2{{x}^{3}}+3{{x}^{2}}+1\).

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(a\). Thể tích khối trụ bằng:

Xem lời giải » 2 năm trước 45
Câu 6: Trắc nghiệm

Hàm số \(y=\frac{1}{2}{{x}^{4}}-3{{x}^{2}}-3\) nghịch biến trên các khoảng nào ?

Xem lời giải » 2 năm trước 44
Câu 7: Trắc nghiệm

Cho hai số thực b và c \(\left( c>0 \right)\). Kí hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm phức của phương trình \({{z}^{2}}+2bz+c=0\). Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).

Xem lời giải » 2 năm trước 44
Câu 8: Trắc nghiệm

Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên sau?

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Tính giá trị của biểu thức \(P={{\log }_{a}}\left( a.\sqrt[3]{a\sqrt{a}} \right)\) với \(0<a\ne 1.\)

Xem lời giải » 2 năm trước 44
Câu 10: Trắc nghiệm

Tìm nguyên hàm của hàm số\(f\left( x \right)={{x}^{3}}\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)\) ?

Xem lời giải » 2 năm trước 43
Câu 11: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;1 \right)\) và mặt phẳng \(\left( P \right):x+2y-2z-1=0.\) Gọi B là điểm đối xứng với A qua \(\left( P \right)\). Độ dài đoạn thẳng AB là

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Cho x, y>0 thỏa mãn \(\log \left( x+2y \right)=\log \left( x \right)+\log \left( y \right)\). Khi đó, giá trị nhỏ nhất của biểu thức \(P=\frac{{{x}^{2}}}{1+2y}+\frac{4{{y}^{2}}}{1+x}\) là:

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Cho hàm số \(y=\frac{x+2}{x-1}\) có đồ thị (C). Chọn mệnh đề sai? 

Xem lời giải » 2 năm trước 42
Câu 14: Trắc nghiệm

Đồ thị hàm số  y = x4 -3x2 + 2 có số điểm cực trị là

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có \(\underset{x\to +\infty }{\mathop{\lim }}\,f\left( x \right)=0\) và \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=+\infty \). Khẳng định nào sau đây là khẳng định đúng?

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »