Cho lăng trụ \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) và \(AB=a\), \(AD=a\sqrt{3}\); \(A'O\) vuông góc với đáy \(\left( ABCD \right)\). Cạnh bên \(AA'\) hợp với mặt đáy \(\left( ABCD \right)\) một góc \({{45}^{0}}\). Tính theo \(a\) thể tích \(V\) của khối lăng trụ đã cho.
A. \(V=\frac{{{a}^{3}}\sqrt{3}}{6}\).
B. \(V=\frac{{{a}^{3}}\sqrt{3}}{3}\).
C. \(V=\frac{{{a}^{3}}\sqrt{6}}{2}\).
D. \(V={{a}^{3}}\sqrt{3}\).
Lời giải của giáo viên
Vì \(A'O\bot \left( ABCD \right)\) nên \({{45}^{0}}=\widehat{AA',\left( ABCD \right)}=\widehat{AA',AO}=\widehat{A'AO}\).
Đường chéo hình chữ nhật \(AC=\sqrt{A{{B}^{2}}+A{{D}^{2}}}=2a\Rightarrow AO=\frac{AC}{2}=a\).
Suy ra tam giác \(A'OA\) vuông cân tại \(O\) nên \(A'O=AO=a\).
Diện tích hình chữ nhật \({{S}_{ABCD}}=AB.AD={{a}^{2}}\sqrt{3}\).
Vậy \({{V}_{ABCD.A'B'C'D'}}={{S}_{ABCD}}.A'O={{a}^{3}}\sqrt{3}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tập xác định \(\text{D}\) của hàm số \(y=\frac{1}{\sqrt{2-x}}+\ln \left( x-1 \right)\).
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=-2{{x}^{3}}+3{{x}^{2}}+1\).
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(a\). Thể tích khối trụ bằng:
Hàm số \(y=\frac{1}{2}{{x}^{4}}-3{{x}^{2}}-3\) nghịch biến trên các khoảng nào ?
Cho hai số thực b và c \(\left( c>0 \right)\). Kí hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm phức của phương trình \({{z}^{2}}+2bz+c=0\). Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên sau?
Tìm nguyên hàm của hàm số\(f\left( x \right)={{x}^{3}}\ln \left( \frac{4-{{x}^{2}}}{4+{{x}^{2}}} \right)\) ?
Tính giá trị của biểu thức \(P={{\log }_{a}}\left( a.\sqrt[3]{a\sqrt{a}} \right)\) với \(0<a\ne 1.\)
Gọi S là tập hợp tất cả các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có tận cùng là 3 và chia hết cho 7 (làm tròn đến chữ số phần nghìn) có dạng \(\overline{0,\,abc}\). Tính \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}\).
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;1 \right)\) và mặt phẳng \(\left( P \right):x+2y-2z-1=0.\) Gọi B là điểm đối xứng với A qua \(\left( P \right)\). Độ dài đoạn thẳng AB là
Cho hàm số \(y=\frac{x+2}{x-1}\) có đồ thị (C). Chọn mệnh đề sai?
Cho x, y>0 thỏa mãn \(\log \left( x+2y \right)=\log \left( x \right)+\log \left( y \right)\). Khi đó, giá trị nhỏ nhất của biểu thức \(P=\frac{{{x}^{2}}}{1+2y}+\frac{4{{y}^{2}}}{1+x}\) là:
Cho số phức \(z=-1+3i\). Phần thực và phần ảo của số phức \(w=2i-3\overline{z}\) lần lượt là: