Lời giải của giáo viên
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên khoảng \(\left( -1;1 \right).\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}-1\) thì \(A\) có tọa độ là
Tìm \(m\) để phương trình \({{x}^{6}}+6{{x}^{4}}-{{m}^{2}}{{x}^{3}}+\left( 15-3{{m}^{2}} \right){{x}^{2}}-6mx+10=0\) có đúng hai nghiệm phân biệt thuộc \(\left[ \frac{1}{2};2 \right]?\)
Tìm các giá trị thực của tham số \(m\) để phương trình \(\sqrt{2-x}+\sqrt{1+x}=\sqrt{m+x-{{x}^{2}}}\) có hai nghiệm phân biệt.
Tìm phương trình của đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+2}{x+1}\)
Số đường tiệm cận của đồ thị hàm số \(y=\frac{x}{{{x}^{2}}-1}\) là:
Cho hàm số \(f\left( x \right)=\frac{2x+1}{x-3}.\) Chọn mệnh đề sai trong các mệnh đề sau đây?
Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là
Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y=\frac{\sqrt{x-1}+2021}{\sqrt{{{x}^{2}}-2mx+m+2}}\) có đúng ba đường tiệm cận.
Cho đường cong \(\left( C \right)\) có phương trình \(y=\frac{x-1}{x+1}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là
Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) cạnh bên bằng \(4a\) và tạo với đáy một góc \({{30}^{0}}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng
Có bao nhiêu điểm \(M\) thuộc đồ thị hàm số \(y=\frac{x+2}{x-1}\) sao cho khoảng cách từ \(M\) đến trục tung bằng hai lần khoảng cách từ \(M\) đến trục hoành?
Số điểm chung giữa mặt cầu và mặt phẳng không thể là
Cho hàm số \(f\left( x \right)={{x}^{3}}+m{{x}^{2}}+nx-1\) với \(m,n\) là các tham số thực thỏa mãn \(m+n>0\) và \(7+2\left( 2m+n \right)<0.\) Tìm số điểm cực trị của hàm số \(y=\left| f\left( \left| x \right| \right) \right|.\)
Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu \(f'\left( x \right)\)
Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là: