Tìm \(m\) để phương trình \({{x}^{6}}+6{{x}^{4}}-{{m}^{2}}{{x}^{3}}+\left( 15-3{{m}^{2}} \right){{x}^{2}}-6mx+10=0\) có đúng hai nghiệm phân biệt thuộc \(\left[ \frac{1}{2};2 \right]?\)
A. \(2<m\le \frac{5}{2}.\)
B. \(\frac{11}{5}<m<4.\)
C. \(\frac{7}{5}\le m<3.\)
D. \(0<m<\frac{9}{4}.\)
Lời giải của giáo viên
Phương trình đã cho tương đương với
\(\left( {{x}^{6}}+6{{x}^{4}}+12{{x}^{2}}+8 \right)-\left( {{m}^{3}}{{x}^{3}}+2{{m}^{2}}{{x}^{2}}+3mx+1 \right)+\left( 3{{x}^{2}}-3mx+3 \right)=0\)
\(\Leftrightarrow {{\left( {{x}^{2}}+2 \right)}^{3}}-{{\left( mx+1 \right)}^{3}}+3\left( {{x}^{2}}-mx+1 \right)=0\)
\(\Leftrightarrow \left( {{x}^{2}}-mx+1 \right)\left[ {{\left( {{x}^{2}}+2 \right)}^{2}}+\left( {{x}^{2}}+2 \right)\left( mx+1 \right)+{{\left( mx+1 \right)}^{2}}+3 \right]=0\)
\(\Leftrightarrow {{x}^{2}}-mx+1=0\) (Vì \({{a}^{2}}+ab+{{b}^{2}}={{\left( a+\frac{1}{2}b \right)}^{2}}+\frac{3}{4}{{b}^{2}}\ge 0,\forall a,b).\)
\(\Leftrightarrow x+\frac{1}{x}=m\) (Do \(x=0\) không thỏa mãn phương trình này).
Xét hàm số \(f\left( x \right)=x+\frac{1}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\) Ta có:
\(f'\left( x \right)=1-\frac{1}{{{x}^{2}}}\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1 \notin \left( {\frac{1}{2};2} \right)\\ x = 1 \in \left( {\frac{1}{2};2} \right) \end{array} \right.\)
Ta có bảng biến thiên
Từ bảng biến thiên trên suy ra để phương trình đã cho có đúng 2 nghiệm thỏa mãn \(\left[ \frac{1}{2};2 \right]\) thì \(2<m\le \frac{5}{2}.\)
Vậy tất cả các giá trị cần tìm của \(m\) là \(2<m\le \frac{5}{2}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}-1\) thì \(A\) có tọa độ là
Tìm các giá trị thực của tham số \(m\) để phương trình \(\sqrt{2-x}+\sqrt{1+x}=\sqrt{m+x-{{x}^{2}}}\) có hai nghiệm phân biệt.
Tìm phương trình của đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+2}{x+1}\)
Số đường tiệm cận của đồ thị hàm số \(y=\frac{x}{{{x}^{2}}-1}\) là:
Cho hàm số \(f\left( x \right)=\frac{2x+1}{x-3}.\) Chọn mệnh đề sai trong các mệnh đề sau đây?
Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y=\frac{\sqrt{x-1}+2021}{\sqrt{{{x}^{2}}-2mx+m+2}}\) có đúng ba đường tiệm cận.
Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là
Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu \(f'\left( x \right)\)
Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là:
Cho đường cong \(\left( C \right)\) có phương trình \(y=\frac{x-1}{x+1}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Số điểm chung giữa mặt cầu và mặt phẳng không thể là
Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) cạnh bên bằng \(4a\) và tạo với đáy một góc \({{30}^{0}}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng
Có bao nhiêu điểm \(M\) thuộc đồ thị hàm số \(y=\frac{x+2}{x-1}\) sao cho khoảng cách từ \(M\) đến trục tung bằng hai lần khoảng cách từ \(M\) đến trục hoành?
Cho \(a\) là số thực dương và \(m,n\) là các số thực tùy ý. Trong các tính chất sau, tính chất nào đúng?