Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Phan Đình Phùng lần 3
Đề thi thử THPT QG năm 2021 môn Toán
-
Hocon247
-
50 câu hỏi
-
90 phút
-
56 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Công thức tính thể tích khối cầu bán kính \(R\) là:
Công thức tính thể tích khối cầu bán kính \(R\) là: \(V=\frac{4}{3}\pi {{R}^{3}}.\)
Cho \(a\) là số thực dương và \(m,n\) là các số thực tùy ý. Trong các tính chất sau, tính chất nào đúng?
Theo tính chất lũy thừa với số thực:
Cho \(a\) là số thực dương và \(m,n\) là các số thực tùy ý ta có: \({{a}^{m}}.{{a}^{n}}={{a}^{m+n}}.\)
Cho số thực dương \(a \) Sau khi rút gọn, biểu thức \(P=\sqrt[3]{a\sqrt{a}}\) có dạng
Ta có: \(\sqrt[3]{a\sqrt{a}}={{\left( a.{{a}^{\frac{1}{2}}} \right)}^{\frac{1}{3}}}={{\left( {{a}^{\frac{3}{2}}} \right)}^{\frac{1}{3}}}={{a}^{\frac{1}{2}}}=\sqrt{a}\)
Số giao điểm của hai đồ thị \(y=f\left( x \right)\) và \(y=g\left( x \right)\) bằng số nghiệm phân biệt của phương trình nào sau đây?
Số giao điểm của hai đồ thị \(y=f\left( x \right)\) và \(y=g\left( x \right)\) bằng số nghiệm phân biệt của phương trình \(f\left( x \right)=g\left( x \right)\Leftrightarrow f\left( x \right)-g\left( x \right)=0.\)
Số điểm chung giữa mặt cầu và mặt phẳng không thể là
Số điểm chung giữa mặt cầu và mặt phẳng không thể là
Đồ thị hàm số nào sau đây luôn nằm dưới trục hoành?
Ta có \(y=-{{x}^{4}}+2{{x}^{2}}-2=-{{\left( {{x}^{2}}-1 \right)}^{2}}-1<0,\forall x\in \mathbb{R},\) do đó đồ thị hàm số \(y=-{{x}^{4}}+2{{x}^{2}}-2\) nằm dưới trục hoành.
Cho hàm số \(f\left( x \right)=\frac{2x+1}{x-3}.\) Chọn mệnh đề sai trong các mệnh đề sau đây?
Tập xác định: \(D=\mathbb{R}\backslash \left\{ 3 \right\}.\)
Ta có \(f'\left( x \right)=\frac{-7}{{{\left( x-3 \right)}^{2}}}<0,\forall x\in D.\)
Vậy hàm số nghịch biến trên các khoảng \(\left( -\infty ;3 \right)\) và \(\left( 3;+\infty \right).\)
Thể tích khối lăng trụ tứ giác đều có tất cả các cạnh bằng \(a\) là
Ta có thể tích khối lăng trụ tứ giác đều có cạnh bằng \(a\) là: \(a.{{a}^{2}}={{a}^{3}}.\)
Thể tích khối lập phương có cạnh bằng \(3a\) là
Thể tích khối lập phương có cạnh bằng \(3a\) là \(V={{\left( 3a \right)}^{2}}=27{{a}^{3}}.\)
Tìm điều kiện của tham số \(b\) để hàm số \(y={{x}^{4}}+b{{x}^{2}}+c\) có 3 điểm cực trị?
Ta có: \(y'=4{{x}^{3}}+2bx\)
\(y' = 0 \Leftrightarrow 2x\left( {2{x^2} + b} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} = - \frac{b}{2} \end{array} \right.\)
Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow -\frac{b}{2}>0\Leftrightarrow b<0.\)
Nếu \({{a}^{\frac{13}{17}}}>{{a}^{\frac{15}{18}}}\) và \({{\log }_{b}}\left( \sqrt{2}+\sqrt{5} \right)>{{\log }_{b}}\left( 2+\sqrt{3} \right)\) thì
Ta có \(\frac{13}{17}<\frac{15}{18}\) và \({{a}^{\frac{13}{17}}}<{{a}^{\frac{15}{18}}}\) nên \(a>1,\sqrt{2}+\sqrt{5}<2+\sqrt{3}\) và \({{\log }_{b}}\left( \sqrt{2}+\sqrt{5} \right)>{{\log }_{b}}\left( 2+\sqrt{3} \right)\) nên \(0<b<1.\)
Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là
Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là \(\frac{1}{3}Bh.\)
Bảng biến thiên ở hình dưới là của hàm số nào trong bốn hàm số được liệt kê dưới đây.
Từ BBT
Tiệm cận ngang là đường thẳng \(y=2\) loại A, B.
\(y'>0,\forall x\ne -1\) nên chọn C.
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:
Mệnh đề nào sau đây sai?
Từ đồ thị
\(\underset{\left[ -2;2 \right]}{\mathop{\max }}\,f\left( x \right)=f\left( 2 \right)=f\left( -2 \right)=2\)
\(\underset{\left[ -2;2 \right]}{\mathop{\min }}\,f\left( x \right)=f\left( 1 \right)=f\left( -1 \right)=-2\)
Đáp án SAI nên chọn D.
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên khoảng \(\left( -1;1 \right).\)
Số cạnh của một hình tứ diện là
Số cạnh của một hình tứ diện là 6.
Đường cong trong hình dưới đây là đồ thị của hàm số nào?
Ta có \(\underset{x\to +\infty }{\mathop{\lim }}\,y=+\infty \) nên \(a>0\) do đó loại đáp án A và C.
Đồ thị hàm số \(y=f\left( x \right)\) đã cho có một điểm cực đại nằm trên trục tung và một điểm cực tiểu nằm bên phải trục tung. Do đó phương trình \(y'=0\) có một nghiệm \({{x}_{1}}=0\) và một nghiệm \({{x}_{2}}>0.\)
Xét đáp án B: \(y' = 0 \Leftrightarrow 3{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 2 \end{array} \right..\) (loại).
Xét đáp án D: \(y' = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right.\) (thỏa mãn).
Cho số thực \(a>0\) và \(a\ne 1.\) Tìm mệnh đề đúng trong các mệnh đề sau
Với số thực \(a>0\) và \(a\ne 1,\) ta có.
+) \({{\log }_{a}}\left( xy \right)={{\log }_{a}}x+{{\log }_{a}}y,\left( \forall x,y>0 \right).\)
+) \({{\log }_{a}}{{x}^{n}}=n{{\log }_{a}}x,\left( x>0,n\ne 0 \right).\)
+) \({{\log }_{a}}1=0\) và \({{\log }_{a}}a=1.\)
+) \({{\log }_{a}}x\) có nghĩa với \(x>0.\)
Vậy mệnh đề đúng là: \({{\log }_{a}}{{x}^{n}}=n{{\log }_{a}}x,\left( x>0,n\ne 0 \right).\)
Cho khối chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(B,SA\) vuông góc với đáy và \(SA=AB=6A. \) Tính thể tích khối chóp \(S.ABC\).
Có \(ABC\) vuông cân tại \(B\) suy ra \(AB=BC=6a\)
Vậy \({{V}_{S.ABC}}=\frac{1}{3}{{S}_{ABC}}.SA=\frac{1}{3}.\frac{1}{2}AB.BC.SA=\frac{1}{3}.\frac{1}{2}6a.6a.6a=36{{a}^{3}}.\)
Tìm phương trình của đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+2}{x+1}\)
Có \(\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{3x+2}{x+1}=3\) suy ra phương trình đường tiệm cận ngang của đồ thị hàm số là \(y=3.\)
Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu \(f'\left( x \right)\)
Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là:
Quan sát bảng xét dấu của \(f'\left( x \right)\) ta thấy hàm số đạt cực tiểu tại \(x=0,x=2\) nên số đểm cực tiểu của hàm số \(y=f\left( x \right)\) là 2.
Nếu tứ diện có chiều cao giảm 3 lần và cạnh đáy tăng 3 lần thì thể tích của nó
Gọi \(V,V',S,S',h,h'\) lần lượt là thể tích, diện tích đáy và chiều cao của khối tứ diện trước và sau khi thay đổi.
Theo tính chất của tam giác đồng dạng thì \(S'=9S.\)
Theo bài ra thì \(h'=\frac{1}{3}h.\)
Thể tích của khối tứ diện sau khi thay đổi là \(V'=\frac{1}{3}S'.h'=\frac{1}{3}.9S.\frac{1}{3}h=3V.\)
Vậy thể tích của khối tứ diện tăng lên 3 lần.
Biết rằng giá trị nhỏ nhất của hàm số \(y=\frac{mx+5}{x-m}\) trên đoạn \(\left[ 0;1 \right]\) bằng \(-7.\) Mệnh đề nào sau đây đúng?
Ta có TXĐ \(D=\mathbb{R}\backslash \left\{ m \right\};y'=\frac{-{{m}^{2}}-5}{{{\left( x-m \right)}^{2}}}<0,\forall x\ne m.\)
Hàm số đạt giá trị nhỏ nhất trên đoạn \(\left[ 0;1 \right]\) bằng \(-7\) khi
\(\left\{ \begin{array}{l} m \notin \left[ {0;1} \right]\\ y\left( 1 \right) = - 7 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m \in \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\\ \frac{{m + 5}}{{1 - m}} = - 7 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m \in \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\\ m = 2 \end{array} \right. \Leftrightarrow m = 2\)
Xét khẳng định: “Với mọi số thực \(a\) và hai số hữu tỉ \(r,s\), ta có \({{\left( a' \right)}^{2}}=a{{'}^{2}}\)”. Với điều kiện nào trong các điều kiện sau thì khẳng định trên đúng.
Do \(S,r\notin \mathbb{Z}\) nên \(a>0\)
Đồ thị của hai hàm số \(y=4{{x}^{4}}-2{{x}^{2}}+1\) và \(y={{x}^{2}}+x+1\) có tất cả bao nhiêu điểm chung?
Phương trình hoành độ giao điểm: \(4{{x}^{4}}-2{{x}^{2}}+1={{x}^{2}}+x+1\Leftrightarrow 4{{x}^{4}}-3{{x}^{2}}-x=0\)
\(\Leftrightarrow x\left( 4{{x}^{3}}-3x-1 \right)=0\Leftrightarrow x\left( x-1 \right)\left( 4{{x}^{2}}+4x+1 \right)=0\)
\( \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x - 1 = 0\\ 4{x^2} + 4x + 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = - \frac{1}{2} \end{array} \right.\)
Số điểm chung của hai đồ thị là 3.
Cho đường cong \(\left( C \right)\) có phương trình \(y=\frac{x-1}{x+1}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là
\(D=\mathbb{R}\backslash \left\{ -1 \right\}.\)
Ta có \(y'=\frac{2}{{{\left( x+1 \right)}^{2}}}\)
Giả sử \(\left( C \right) \cap \left( {Oy} \right) = M\left( {{x_0};{y_0}} \right) \Rightarrow \left\{ \begin{array}{l} {x_0} = 0\\ {y_0} = - 1 \end{array} \right.\)
Ta có \(y'\left( 0 \right)=2.\) Phương trình tiếp tuyến tại \(M\left( 0;-1 \right)\) là \(y=2x-1.\)
Cho \(a>0\) và khác \(1,b>0,c>0\) và \({{\log }_{a}}b=-2,{{\log }_{a}}c=5.\) Giá trị của \({{\log }_{a}}\frac{a\sqrt{b}}{\sqrt[3]{c}}\) là
Ta có \({{\log }_{a}}\frac{a\sqrt{b}}{\sqrt[3]{c}}={{\log }_{a}}\frac{a.{{b}^{\frac{1}{2}}}}{{{c}^{\frac{1}{3}}}}={{\log }_{a}}a+\frac{1}{2}{{\log }_{a}}b-\frac{1}{3}{{\log }_{a}}c=1-1-\frac{5}{3}=-\frac{5}{3}.\)
Số đường tiệm cận của đồ thị hàm số \(y=\frac{x}{{{x}^{2}}-1}\) là:
Tập xác định \(D=\mathbb{R}\backslash \left\{ \pm 1 \right\}.\)
Ta có \(\underset{x\to +\infty }{\mathop{\lim }}\,\frac{x}{{{x}^{2}}-1}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\frac{1}{x}}{1-\frac{1}{{{x}^{2}}}}=0\Rightarrow y=0\) là đường tiệm cận ngang của đồ thị hàm số.
\(\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}-1}=+\infty \Rightarrow x=1\) là đường tiệm cận đứng của đồ thị hàm số.
\(\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}-1}=+\infty \Rightarrow x=-1\) là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có ba đường tiệm cận.
Trung điểm các cạnh của hình tứ diện đều tạo thành
Trung điểm các cạnh của hình tứ diện đều tạo thành một bát diện đều.
Với giá trị nào của \(m\) thì đồ thị hàm số \(y=\frac{2{{x}^{2}}+6mx+4}{mx+2}\) đi qua điểm \(A\left( -1;4 \right)?\)
Vì đồ thị hàm số đi qua điểm \(A\left( -1;4 \right)\) nên \(4=\frac{2-6m+4}{-m+2}\Leftrightarrow m=-1.\)
Tìm tất cả các giá trị tực của tham số \(m\) để hàm số \(y=\frac{x-m}{x+1}\) đồng biến trên từng khoảng xác định.
+ Tập xác định của hàm số \(D=\mathbb{R}\backslash \left\{ -1 \right\}.\)
+ Để hàm số đồng biến trên từng khoảng xác định thì:
\(y'>0,\forall x\in D\Leftrightarrow y'=\frac{1+m}{{{\left( x+1 \right)}^{2}}}>0\Leftrightarrow 1+m>0\Leftrightarrow m>-1.\)
Cho mặt cầu \(S\left( I;R \right)\) và điểm \(A\) nằm ngoài mặt cầu. Qua \(A\) kẻ đường thẳng cắt \(\left( S \right)\) tại hai điểm phân biệt \(B,C. \) Tích \(AB.AC\) bằng
+ Gọi \(D\) là điểm đối xứng của \(C\) qua \(I.\) ta suy ra \(BD\bot AC\)
+ Ta có
\(AB.AC=\overrightarrow{AB}.\overrightarrow{AC}=\left( \overrightarrow{AD}+\overrightarrow{DB} \right)\overrightarrow{AC}=\overrightarrow{AD}.\overrightarrow{AC}=\left( \overrightarrow{AI}+\overrightarrow{ID} \right)\left( \overrightarrow{AI}+\overrightarrow{IC} \right)\)
\(=\left( \overrightarrow{AI}-\overrightarrow{IC} \right)\left( \overrightarrow{AI}+\overrightarrow{IC} \right)=A{{I}^{2}}-I{{C}^{2}}=A{{I}^{2}}-{{R}^{2}}.\)
Giả sử các biểu thức chứa logarit đều có nghĩa. Mệnh đề nào sau đây đúng?
Ta có \({{\log }_{a}}b>{{\log }_{a}}c\Leftrightarrow b>c\) khi \(a>1.\) Do đó phương án \(A\) sai.
Mặt khác \({{\log }_{a}}b<{{\log }_{a}}c\Leftrightarrow b>c\) khi \(0<a<1.\) Do đó phương án \(D\) sai.
Hơn nữa \({{\log }_{a}}b={{\log }_{a}}c\Leftrightarrow b=a,\forall a\ne 1,b>0,c>0.\) Do đó chọn \(C.\)
Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}-1\) thì \(A\) có tọa độ là
Tập xác định: \(D=\mathbb{R}.\)
Ta có \(y' = 6{x^2} - 6x,y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1 \end{array} \right..\)
Ta có bảng biến thiên
Dựa vào bảng biến thiên điểm \(A\left( 0;-1 \right)\) là điểm cực đại của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}-1.\)
Hình hộp chữ nhật \(ABCD.A'B'C'D'\) có tâm mặt cầu ngoại tiếp là điểm \(I.\) Mệnh đề nào sau đây là đúng?
Để xác định mặt cầu ngoại tiếp hình hộp chữ nhật, ta xác định tâm đường tròn ngoại tiếp hai đáy (là giao điểm của hai đường chéo).
Khi đó \(I\) là trung điểm của đoạn nối 2 tâm và cũng là trung điểm của \(A'C.\)
Cho hàm số \(f\left( x \right)\) có bảng xét dấu đạo hàm như hình bên dưới.
Hàm số \(y=f\left( 1-2x \right)\) đồng biến trên khoảng
\(y' \ge 0 \Leftrightarrow - 2f'\left( {1 - 2x} \right) \ge 0 \Leftrightarrow f'\left( {1 - 2x} \right) \le 0 \Leftrightarrow \left[ \begin{array}{l} 1 - 2x \le - 3\\ - 2 \le 1 - 2x \le 1\\ 1 - 2x \ge 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x \ge 2\\ 0 \le x \le \frac{3}{2}\\ x \le - 1 \end{array} \right.\)
Vì hàm số đồng biến trên các khoảng \(\left( -\infty ;1 \right),\left( 0;\frac{3}{2} \right),\left( 2;+\infty \right).\)
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y=m{{x}^{4}}+\left( m-3 \right){{x}^{2}}+3m-5\) chỉ có cực tiểu mà không có cực đại.
Trường hợp 1. Với \(m=0\) ta có \(y=-3{{x}^{2}}-5\)
\(y'=-6x;y'=0\Leftrightarrow x=0\)
Bảng biến thiên
\(\Rightarrow m=0\) là giá trị không thỏa mãn
Trường hợp 2. Với \(m\ne 0.\) khi đó hàm số đã cho là hàm trùng phương.
Hàm số đã cho chỉ có cực tiểu mà không có cực đại \( \Leftrightarrow \left\{ \begin{array}{l} m > 0\\ m\left( {m - 3} \right) \ge 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > 0\\ m \ge 3 \end{array} \right. \Leftrightarrow m \ge 3.\)
Vậy \(m\ge 3.\)
Cho hai số thực \(a,b\) thỏa mãn \(1>a\ge b>0.\) Tìm giá trị nhỏ nhất của biểu thức sau \(T=\log _{a}^{2}b+{{\log }_{ab}}{{a}^{36}}\)
Ta có \(T=\log _{a}^{2}b+{{\log }_{ab}}{{a}^{36}}\)
\(=\log _{a}^{2}b+36.\frac{1}{{{\log }_{a}}ab}\)
\(=\log _{a}^{2}b+\frac{36}{1+{{\log }_{a}}b}\)
Đặt \(t={{\log }_{a}}b\)
Vì \(0<b\le a<1\) nên \({{\log }_{a}}b\ge {{\log }_{a}}a\Rightarrow t\ge 1.\)
Xét hàm \(f\left( t \right)={{t}^{2}}+\frac{36}{1+t}\) trên \(\left[ 1;+\infty \right)\)
\(f'\left( t \right)=2t-\frac{36}{{{\left( t+1 \right)}^{2}}},f'\left( t \right)=0\Leftrightarrow t=2\)
Bảng biến thiên
Từ bảng biến thiên ta có \({{T}_{\min }}=16\)
Dấu “=” xảy ra \(\Leftrightarrow t=2\Leftrightarrow b={{a}^{2}}.\)
Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y=\frac{\sqrt{x-1}+2021}{\sqrt{{{x}^{2}}-2mx+m+2}}\) có đúng ba đường tiệm cận.
Ta có \(\exists \underset{x\to -\infty }{\mathop{\lim }}\,y\) và \(\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{x-1}+2021}{\sqrt{{{x}^{2}}-2mx+m+2}}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{\frac{1}{x}-\frac{1}{{{x}^{2}}}}+\frac{2021}{x}}{\sqrt{1-\frac{2m}{x}+\frac{m+2}{{{x}^{2}}}}}=0.\)
Suy ra đồ thị hàm số có một tiệm cận ngang có phương trình \(y=0.\)
Để đồ thị hàm số có đúng ba đường tiệm cận thì phương trình \({{x}^{2}}-2mx+m+2=0\) có đúng hai nghiệm phân biệt \({{x}_{1}}>{{x}_{2}}\ge 1\)
\( \Leftrightarrow \left\{ \begin{array}{l} \Delta ' = {m^2} - m - 2 > 0\\ \left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 0\\ {x_1} - 1 + {x_2} - 1 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left( {m + 1} \right)\left( {m - 2} \right) > 0\\ {x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \ge 0\\ {x_1} + {x_2} > 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left( {m + 1} \right)\left( {m - 2} \right) > 0\\ m + 2 - 2m + 1 \ge 0\\ 2m > 2 \end{array} \right. \Leftrightarrow 2 < m \le 3.\)
Vậy các giá trị \(2<m\le 3\) thỏa mãn yêu cầu bài toán.
Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên mỗi nửa khoảng \(\left( -\infty ;-2 \right]\) và \(\left[ 2;+\infty \right)\) và có bảng biến thiên như dưới đây
Tìm tập hợp các giá trị thực của tham số \(m\) để phương trình \(f\left( x \right)=m\) có hai nghiệm phân biệt.
Dựa vào bảng biến thiên phương trình \(f\left( x \right)=m\) có hai nghiệm phân biệt \(\left[ \begin{array}{l} m \ge 2\\ \frac{7}{4} < m \le 2 \end{array} \right..\)
Vậy \(m\in \left( \frac{7}{2};2 \right]\cup \left[ 22;+\infty \right)\) thì phương trình \(f\left( x \right)=m\) có hai nghiệm phân biệt.
Cho tứ diện \(ABCD\) có \(AB=2a,AC=3a,AD=4a,\widehat{BAC}=\widehat{CAD}=\widehat{DAB}={{60}^{0}}.\) Thể tích khối tứ diện \(ABCD\) bằng
Trên các cạnh \(AC,AD\) lần lượt lấy các điểm \(E,F\) sao cho \(AE=AF=2a\Rightarrow ABEF\) là tứ diện đều cạnh \(2a.\)
Gọi \(H\) là trọng tâm của \(\Delta BEF\Rightarrow BH=\frac{2a\sqrt{3}}{3}\Rightarrow AH=\sqrt{A{{B}^{2}}-B{{H}^{2}}}=\frac{2a\sqrt{6}}{3}.\)
\(\Rightarrow {{V}_{ABEF}}=\frac{1}{3}AH.{{S}_{BEF}}=\frac{1}{3}.\frac{2a\sqrt{6}}{3}.{{a}^{2}}\sqrt{3}=\frac{2\sqrt{2}{{a}^{3}}}{3}.\)
Vì \(\frac{{{V}_{ABCD}}}{{{V}_{ABEF}}}=\frac{AB}{AB}.\frac{AC}{AE}.\frac{AD}{AF}=\frac{3}{2}.A=3\Rightarrow {{V}_{ABCD}}=2\sqrt{2}{{a}^{3}}.\)
Diện tích mặt cầu ngoại tiếp một tứ diện đều cạnh \(a\) là
Xét tứ diện đều \(S.ABC.\) Gọi \(H\) là trọng tâm của \(\Delta ABC,M\) là trung điểm của \(SA,I\) là giao điểm của \(SH\) và mặt phẳng trung trực của \(SA\Rightarrow I\) là tâm mặt cầu ngoại tiếp tứ diện \(S.ABC.\)
\(AH=\frac{a\sqrt{3}}{3}\Rightarrow SH=\sqrt{S{{A}^{2}}-A{{H}^{2}}}=\frac{a\sqrt{6}}{3}\Rightarrow R=SI=\frac{S{{A}^{2}}}{2SH}=\frac{3a}{2\sqrt{6}}.\)
Vậy diện tích mặt cầu là \(4.\pi .{{\left( \frac{3a}{2\sqrt{6}} \right)}^{2}}=\frac{3\pi {{a}^{2}}}{2}.\)
Có bao nhiêu điểm \(M\) thuộc đồ thị hàm số \(y=\frac{x+2}{x-1}\) sao cho khoảng cách từ \(M\) đến trục tung bằng hai lần khoảng cách từ \(M\) đến trục hoành?
Gọi \(M\left( x;\frac{x+2}{x-1} \right),\) với \(x\ne 1.\)
Ta có \(\left\{ \begin{array}{l} d\left( {M;Oy} \right) = \left| x \right|\\ d\left( {M;Ox} \right) = \left| {\frac{{x + 2}}{{x - 1}}} \right| \end{array} \right..\)
Theo giả thiết \(d\left( M;Oy \right)=2d\left( M;Ox \right)\Leftrightarrow \left| x \right|=2\left| \frac{x+2}{x-1} \right|.\)
TH1: \(x = 2.\frac{{x + 2}}{{x - 1}} \Rightarrow {x^2} - x = 2x + 4 \Leftrightarrow {x^2} - 3x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 4 \end{array} \right.\) (thỏa mãn).
Do đó \(M\left( -1;-\frac{1}{2} \right)\) hoặc \(M\left( 4;2 \right).\)
TH2: \(-x=2.\frac{x+2}{x-1}\Rightarrow -{{x}^{2}}+x=2x+4\Leftrightarrow {{x}^{2}}+x+4=0\) (vô nghiệm).
Vậy có 2 điểm M thỏa mãn yêu cầu bài toán nên chọn đáp án B.
Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) cạnh bên bằng \(4a\) và tạo với đáy một góc \({{30}^{0}}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng
Tam giác \(A'B'C'\) là tam giác đều cạnh \(a\) nên \({{S}_{\Delta A'B'C'}}=\frac{{{a}^{2}}\sqrt{3}}{4}.\)
Gọi \(H\) là hình chiếu vuông góc của \(A\) trên \(\left( A'B'C' \right).\)
Ta có góc giữa \(AA'\) và \(\left( A'B'C' \right)\) là \(\widehat{AA'H}={{30}^{0}},\) suy ra \(AH=AA'.\sin {{30}^{0}}=2a.\)
Thể tích khối lăng trụ \(ABC.A'B'C'\) là \(V=AH.{{S}_{A'B'C'}}=2a.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{\sqrt{3}{{a}^{3}}}{2}\) nên chọn đáp án D.
Cho đồ thị \(\left( {{C}_{m}} \right):y={{x}^{3}}-2{{x}^{2}}+\left( 1-m \right)x+m.\) Khi \(m={{m}_{0}}\) thì \(\left( {{C}_{m}} \right)\) cắt trục hoành tại ba điểm phân biệt có hoành độ \({{x}_{1}},{{x}_{2}},{{x}_{3}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=4.\) Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm:
\({x^3} - 2{x^2} + \left( {1 - m} \right)x + m = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x - m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ {x^2} - x - m = 0{\rm{ }}\left( 1 \right) \end{array} \right.\)
Giả sử \({{x}_{3}}=1\) thì yêu cầu bài toán tương đương với tìm \(m\) để \(\left( 1 \right)\) có hai nghiệm \({{x}_{1}},{{x}_{2}}\) phân biệt khác 1 và thỏa mãn: \(x_{1}^{2}+x_{2}^{2}=3.\)
Điều này tương đương với
\(\left\{ \begin{array}{l} \Delta > 0\\ 1 - 1 - m \ne 0\\ {\left( {{x_1} + {x_2}} \right)^2} - 2{x_2}{x_2} = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 1 + 4m > 0\\ m \ne 0\\ {1^2} + 2m = 3 \end{array} \right. \Leftrightarrow m = 1\)
Vậy giá trị cần tìm của \(m\) là \(m=1.\)
Tìm \(m\) để phương trình \({{x}^{6}}+6{{x}^{4}}-{{m}^{2}}{{x}^{3}}+\left( 15-3{{m}^{2}} \right){{x}^{2}}-6mx+10=0\) có đúng hai nghiệm phân biệt thuộc \(\left[ \frac{1}{2};2 \right]?\)
Phương trình đã cho tương đương với
\(\left( {{x}^{6}}+6{{x}^{4}}+12{{x}^{2}}+8 \right)-\left( {{m}^{3}}{{x}^{3}}+2{{m}^{2}}{{x}^{2}}+3mx+1 \right)+\left( 3{{x}^{2}}-3mx+3 \right)=0\)
\(\Leftrightarrow {{\left( {{x}^{2}}+2 \right)}^{3}}-{{\left( mx+1 \right)}^{3}}+3\left( {{x}^{2}}-mx+1 \right)=0\)
\(\Leftrightarrow \left( {{x}^{2}}-mx+1 \right)\left[ {{\left( {{x}^{2}}+2 \right)}^{2}}+\left( {{x}^{2}}+2 \right)\left( mx+1 \right)+{{\left( mx+1 \right)}^{2}}+3 \right]=0\)
\(\Leftrightarrow {{x}^{2}}-mx+1=0\) (Vì \({{a}^{2}}+ab+{{b}^{2}}={{\left( a+\frac{1}{2}b \right)}^{2}}+\frac{3}{4}{{b}^{2}}\ge 0,\forall a,b).\)
\(\Leftrightarrow x+\frac{1}{x}=m\) (Do \(x=0\) không thỏa mãn phương trình này).
Xét hàm số \(f\left( x \right)=x+\frac{1}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\) Ta có:
\(f'\left( x \right)=1-\frac{1}{{{x}^{2}}}\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1 \notin \left( {\frac{1}{2};2} \right)\\ x = 1 \in \left( {\frac{1}{2};2} \right) \end{array} \right.\)
Ta có bảng biến thiên
Từ bảng biến thiên trên suy ra để phương trình đã cho có đúng 2 nghiệm thỏa mãn \(\left[ \frac{1}{2};2 \right]\) thì \(2<m\le \frac{5}{2}.\)
Vậy tất cả các giá trị cần tìm của \(m\) là \(2<m\le \frac{5}{2}.\)
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Trên các đoạn \(SA,SB,SC,SD\) lấy lần lượt các điểm \(E,F,G,H\) thỏa mãn \(\frac{SE}{SA}=\frac{SG}{SC}=\frac{1}{3},\frac{SF}{SB}=\frac{SH}{SD}=\frac{2}{3}.\) Tỉ số thể tích khối \(EFGH\) với khối \(S.ABCD\) bằng:
Gọi \(O\) là tâm hình bình hành \(ABCD.\)
Trong \(\left( SBD \right)\) gọi \(I=FH\cap SO\Rightarrow \frac{SI}{SO}=\frac{2}{3}.\)
Trong \(\left( SAC \right)\) gọi \(J=EG\cap SO\Rightarrow \frac{SJ}{SO}=\frac{1}{3}.\)
\(\frac{{{V}_{SEJF}}}{{{V}_{SAON}}}=\frac{SE}{SA}.\frac{SJ}{SO}.\frac{SF}{SB}=\frac{1}{3}.\frac{1}{3}.\frac{2}{3}=\frac{2}{27}.\)
\(\Rightarrow {{V}_{SEJF}}=\frac{2}{27}{{V}_{SAOB}}=\frac{2}{27}.\frac{1}{4}{{V}_{S.ABCD}}=\frac{1}{54}{{V}_{S.ABCD}}\)
\(\frac{{{V}_{SEIF}}}{{{V}_{SAOB}}}=\frac{SE}{SA}.\frac{SI}{SO}.\frac{SF}{SB}=\frac{1}{3}.\frac{2}{3}.\frac{2}{3}=\frac{4}{27}.\)
\(\Rightarrow {{V}_{SEIF}}=\frac{4}{27}{{V}_{SAOB}}=\frac{4}{27}.\frac{1}{4}{{V}_{S.ABCD}}=\frac{1}{27}{{V}_{S.ABCD}}.\)
\({{V}_{F.EIJ}}={{V}_{S.EIJ}}-{{V}_{SEJF}}=\frac{1}{27}{{V}_{S.ABCD}}-\frac{1}{54}{{V}_{S.ABCD}}=\frac{1}{54}{{V}_{S.ABCD}}\)
Chứng minh tương tự ta có:
\({{V}_{F.IJG}}={{V}_{H.IJG}}={{V}_{H.IJE}}=\frac{1}{54}{{V}_{S.ABCD}}.\)
\({{V}_{EFGH}}={{V}_{F.EJI}}+{{V}_{F.IJG}}+{{V}_{H.IJG}}+{{V}_{H.IJE}}=\frac{4}{54}{{V}_{S.ABCD}}=\frac{2}{27}{{V}_{S.ABCD}}\)
\(\Rightarrow \frac{{{V}_{EFGH}}}{{{V}_{S.ABCD}}}=\frac{2}{27}.\)
Tìm các giá trị thực của tham số \(m\) để phương trình \(\sqrt{2-x}+\sqrt{1+x}=\sqrt{m+x-{{x}^{2}}}\) có hai nghiệm phân biệt.
\(\sqrt{2-x}+\sqrt{1+x}=\sqrt{m+x-{{x}^{2}}}\left( 1 \right)\)
Điều kiện: \(-1\le x\le 2.\)
Phương trình trở thành: \(2-x+1+x+2\sqrt{2+x-{{x}^{2}}}=m+x-{{x}^{2}}.\)
\(\Leftrightarrow 2\sqrt{2+x-{{x}^{2}}}=\left( 2+x-{{x}^{2}} \right)+m-5\)
Đặt \(t=\sqrt{2+x-{{x}^{2}}}.\)
Xét hàm số \(f\left( x \right)=2+x-{{x}^{2}}\) trên \(\left[ -1;2 \right].\)
\(f'\left( x \right)=-2x+1.\)
\(f'\left( x \right)=0\Leftrightarrow x=\frac{1}{2}\Rightarrow y=\frac{9}{4}.\)
Bảng biến thiên:
Vậy \(t\in \left[ 0;\frac{3}{2} \right].\)
Phương trình trở thành:
\(m=-{{t}^{2}}+2t+5\left( 2 \right)\) với \(t\in \left[ 0;\frac{3}{2} \right].\)
Xét hàm số \(g\left( x \right)=-{{t}^{2}}+2t+5.\)
\(g'\left( t \right)=-2t+2.\)
\(g'\left( t \right)=0\Leftrightarrow t=1\Rightarrow f\left( 1 \right)=6.\)
\(g\left( 0 \right)=5;g\left( \frac{3}{2} \right)=\frac{23}{4}.\)
Bảng biến thiên:
Cứ 1 nghiệm \(t\in \left[ 0;\frac{3}{2} \right)\) thì tồn tại 2 nghiệm \(x\in \left[ -1;2 \right].\)
Vậy để phương trình \(\left( 1 \right)\) có 2 nghiệm phân biệt \(\Leftrightarrow \) phương trình \(\left( 2 \right)\) có 1 nghiệm \(t\in \left[ 0;\frac{3}{2} \right).\)
Dựa vào bảng biến thiên ta có \(m\in \left[ 5;\frac{23}{4} \right)\cup \left\{ 6 \right\}.\)
Cho hàm số \(y=f\left( x \right).\) Hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ bên.
Hàm số \(g\left( x \right)=f\left( x+1 \right)+\frac{{{x}^{3}}}{3}-3x\) nghịch biến trên khoảng nào dưới đây?
Ta có \(g'\left( x \right)=f'\left( x+1 \right)+{{x}^{2}}-3\)
Cho \(g'\left( x \right)=0\Leftrightarrow f'\left( x+1 \right)=3-{{x}^{2}}\)
Đặt \(t=x+1\)
Suy ra \(f'\left( t \right)=-{{t}^{2}}+2t+2\)
Gọi \(h\left( t \right)=-{{t}^{2}}+2t+2\Rightarrow g'\left( t \right)=f'\left( t \right)-h\left( t \right)\)
Đồ thị \(y=h\left( t \right)\) có đỉnh \(I\left( 1;3 \right);t=3\Rightarrow h\left( 3 \right)=-1;t=0\Rightarrow h\left( 0 \right)=2\)
Sau khi vẽ \(h\left( t \right)=-{{t}^{2}}+2t+2\) ta được hình vẽ bên
Hàm số nghịch biến khi \(g'\left( t \right)\le 0\Leftrightarrow f'\left( t \right)-h\left( t \right)\le 0\Leftrightarrow 0\le t\le 3\)
Suy ra \(0\le x+1\le 3\Leftrightarrow -1\le x\le 2\)
Vậy hàm số \(y=g\left( x \right)\) nghịch biến trên khoảng \(\left( -1;2 \right).\)
Cho hàm số \(f\left( x \right)={{x}^{3}}+m{{x}^{2}}+nx-1\) với \(m,n\) là các tham số thực thỏa mãn \(m+n>0\) và \(7+2\left( 2m+n \right)<0.\) Tìm số điểm cực trị của hàm số \(y=\left| f\left( \left| x \right| \right) \right|.\)
Giả thiết \(\left\{ \begin{array}{l} f\left( x \right) = {x^3} + m{x^2} + nx - 1\\ m + n > 0\\ 7 + 2\left( {2m + n} \right) < 0 \end{array} \right.\)
Suy ra \(\left\{ \begin{array}{l} f\left( 0 \right) = - 2\\ f\left( 1 \right) = m + n > 0\\ f\left( 2 \right) = 7 + 2\left( {2m + n} \right) < 0\\ \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l} f\left( 0 \right).f\left( 1 \right) < 0\\ f\left( 1 \right).f\left( 2 \right) < 0\\ f\left( 2 \right) < 0\\ \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\) (với lại f(x) liên tục trên R)
\(\Rightarrow f\left( x \right)=0\) có 3 nghiệm lần lượt là \({{x}_{1}}\in \left( 0;1 \right),{{x}_{2}}\in \left( 1;2 \right),{{x}_{3}}\in \left( 2;+\infty \right)\)
(do \(f\left( x \right)\) là đa thức bậc ba nên có tối đa 3 nghiệm.)
Như vậy đồ thị của hàm số \(y=f\left( x \right)\) có 2 điểm cực trị đều nằm bên phải trục tung.
Ta phác họa đồ thị \(y=f\left( x \right)\) như sau
Từ đó suy ra đồ thị \(y=f\left( \left| x \right| \right)\) như hình bên dưới
Cuối cùng, đồ thị của hàm số \(y=\left| f\left( \left| x \right| \right) \right|\) như sau
Kết luận, đồ thị hàm số \(y=\left| f\left( \left| x \right| \right) \right|\) có 11 điểm cực trị.