Câu hỏi Đáp án 2 năm trước 38

Cho đồ thị \(\left( {{C}_{m}} \right):y={{x}^{3}}-2{{x}^{2}}+\left( 1-m \right)x+m.\) Khi \(m={{m}_{0}}\) thì \(\left( {{C}_{m}} \right)\) cắt trục hoành tại ba điểm phân biệt có hoành độ \({{x}_{1}},{{x}_{2}},{{x}_{3}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=4.\) Khẳng định nào sau đây đúng?

A. \({{m}_{0}}\in \left( -2;0 \right).\)

B. \({{m}_{0}}\in \left( 0;2 \right).\)

Đáp án chính xác ✅

C. \({{m}_{0}}\in \left( 1;2 \right).\)

D. \({{m}_{0}}\in \left( 2;5 \right).\)

Lời giải của giáo viên

verified HocOn247.com

Phương trình hoành độ giao điểm:

\({x^3} - 2{x^2} + \left( {1 - m} \right)x + m = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - x - m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ {x^2} - x - m = 0{\rm{ }}\left( 1 \right) \end{array} \right.\)

Giả sử \({{x}_{3}}=1\) thì yêu cầu bài toán tương đương với tìm \(m\) để \(\left( 1 \right)\) có hai nghiệm \({{x}_{1}},{{x}_{2}}\) phân biệt khác 1 và thỏa mãn: \(x_{1}^{2}+x_{2}^{2}=3.\)

Điều này tương đương với

\(\left\{ \begin{array}{l} \Delta > 0\\ 1 - 1 - m \ne 0\\ {\left( {{x_1} + {x_2}} \right)^2} - 2{x_2}{x_2} = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 1 + 4m > 0\\ m \ne 0\\ {1^2} + 2m = 3 \end{array} \right. \Leftrightarrow m = 1\)

Vậy giá trị cần tìm của \(m\) là \(m=1.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}-1\) thì \(A\) có tọa độ là

Xem lời giải » 2 năm trước 141
Câu 2: Trắc nghiệm

Tìm \(m\) để phương trình \({{x}^{6}}+6{{x}^{4}}-{{m}^{2}}{{x}^{3}}+\left( 15-3{{m}^{2}} \right){{x}^{2}}-6mx+10=0\) có đúng hai nghiệm phân biệt thuộc \(\left[ \frac{1}{2};2 \right]?\)

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Tìm các giá trị thực của tham số \(m\) để phương trình \(\sqrt{2-x}+\sqrt{1+x}=\sqrt{m+x-{{x}^{2}}}\) có hai nghiệm phân biệt.

Xem lời giải » 2 năm trước 43
Câu 4: Trắc nghiệm

Tìm phương trình của đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+2}{x+1}\)

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số \(y=\frac{x}{{{x}^{2}}-1}\) là:

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Cho hàm số \(f\left( x \right)=\frac{2x+1}{x-3}.\) Chọn mệnh đề sai trong các mệnh đề sau đây?

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là

Xem lời giải » 2 năm trước 39
Câu 8: Trắc nghiệm

Trung điểm các cạnh của hình tứ diện đều tạo thành

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y=\frac{\sqrt{x-1}+2021}{\sqrt{{{x}^{2}}-2mx+m+2}}\) có đúng ba đường tiệm cận.

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Có bao nhiêu điểm \(M\) thuộc đồ thị hàm số \(y=\frac{x+2}{x-1}\) sao cho khoảng cách từ \(M\) đến trục tung bằng hai lần khoảng cách từ \(M\) đến trục hoành?

Xem lời giải » 2 năm trước 38
Câu 11: Trắc nghiệm

Cho đường cong \(\left( C \right)\) có phương trình \(y=\frac{x-1}{x+1}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là

Xem lời giải » 2 năm trước 38
Câu 12: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) cạnh bên bằng \(4a\) và tạo với đáy một góc \({{30}^{0}}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Số điểm chung giữa mặt cầu và mặt phẳng không thể là

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu \(f'\left( x \right)\)

Số điểm cực tiểu của hàm số \(y=f\left( x \right)\) là:

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »