Lời giải của giáo viên
Gọi \(M\left( x;\frac{x+2}{x-1} \right),\) với \(x\ne 1.\)
Ta có \(\left\{ \begin{array}{l} d\left( {M;Oy} \right) = \left| x \right|\\ d\left( {M;Ox} \right) = \left| {\frac{{x + 2}}{{x - 1}}} \right| \end{array} \right..\)
Theo giả thiết \(d\left( M;Oy \right)=2d\left( M;Ox \right)\Leftrightarrow \left| x \right|=2\left| \frac{x+2}{x-1} \right|.\)
TH1: \(x = 2.\frac{{x + 2}}{{x - 1}} \Rightarrow {x^2} - x = 2x + 4 \Leftrightarrow {x^2} - 3x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = 4 \end{array} \right.\) (thỏa mãn).
Do đó \(M\left( -1;-\frac{1}{2} \right)\) hoặc \(M\left( 4;2 \right).\)
TH2: \(-x=2.\frac{x+2}{x-1}\Rightarrow -{{x}^{2}}+x=2x+4\Leftrightarrow {{x}^{2}}+x+4=0\) (vô nghiệm).
Vậy có 2 điểm M thỏa mãn yêu cầu bài toán nên chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}-1\) thì \(A\) có tọa độ là
Tìm \(m\) để phương trình \({{x}^{6}}+6{{x}^{4}}-{{m}^{2}}{{x}^{3}}+\left( 15-3{{m}^{2}} \right){{x}^{2}}-6mx+10=0\) có đúng hai nghiệm phân biệt thuộc \(\left[ \frac{1}{2};2 \right]?\)
Tìm các giá trị thực của tham số \(m\) để phương trình \(\sqrt{2-x}+\sqrt{1+x}=\sqrt{m+x-{{x}^{2}}}\) có hai nghiệm phân biệt.
Số đường tiệm cận của đồ thị hàm số \(y=\frac{x}{{{x}^{2}}-1}\) là:
Tìm phương trình của đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+2}{x+1}\)
Cho hàm số \(f\left( x \right)=\frac{2x+1}{x-3}.\) Chọn mệnh đề sai trong các mệnh đề sau đây?
Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y=\frac{\sqrt{x-1}+2021}{\sqrt{{{x}^{2}}-2mx+m+2}}\) có đúng ba đường tiệm cận.
Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là
Cho đường cong \(\left( C \right)\) có phương trình \(y=\frac{x-1}{x+1}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là
Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) cạnh bên bằng \(4a\) và tạo với đáy một góc \({{30}^{0}}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng
Số điểm chung giữa mặt cầu và mặt phẳng không thể là
Cho đồ thị \(\left( {{C}_{m}} \right):y={{x}^{3}}-2{{x}^{2}}+\left( 1-m \right)x+m.\) Khi \(m={{m}_{0}}\) thì \(\left( {{C}_{m}} \right)\) cắt trục hoành tại ba điểm phân biệt có hoành độ \({{x}_{1}},{{x}_{2}},{{x}_{3}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=4.\) Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị tực của tham số \(m\) để hàm số \(y=\frac{x-m}{x+1}\) đồng biến trên từng khoảng xác định.
Nếu tứ diện có chiều cao giảm 3 lần và cạnh đáy tăng 3 lần thì thể tích của nó