Hình hộp chữ nhật \(ABCD.A'B'C'D'\) có tâm mặt cầu ngoại tiếp là điểm \(I.\) Mệnh đề nào sau đây là đúng?
A. Luôn tồn tại tâm \(I,\) nhưng vị trí \(I\) phụ thuộc vào kích thước của hình hộp.
B. \(I\) là trung điểm \(A'C. \)
C. Không tồn tại tâm \(I.\)
D. \(I\) là tâm đáy \(ABCD. \)
Lời giải của giáo viên
Để xác định mặt cầu ngoại tiếp hình hộp chữ nhật, ta xác định tâm đường tròn ngoại tiếp hai đáy (là giao điểm của hai đường chéo).
Khi đó \(I\) là trung điểm của đoạn nối 2 tâm và cũng là trung điểm của \(A'C.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}-1\) thì \(A\) có tọa độ là
Tìm \(m\) để phương trình \({{x}^{6}}+6{{x}^{4}}-{{m}^{2}}{{x}^{3}}+\left( 15-3{{m}^{2}} \right){{x}^{2}}-6mx+10=0\) có đúng hai nghiệm phân biệt thuộc \(\left[ \frac{1}{2};2 \right]?\)
Tìm các giá trị thực của tham số \(m\) để phương trình \(\sqrt{2-x}+\sqrt{1+x}=\sqrt{m+x-{{x}^{2}}}\) có hai nghiệm phân biệt.
Tìm phương trình của đường tiệm cận ngang của đồ thị hàm số \(y=\frac{3x+2}{x+1}\)
Số đường tiệm cận của đồ thị hàm số \(y=\frac{x}{{{x}^{2}}-1}\) là:
Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là
Số điểm chung giữa mặt cầu và mặt phẳng không thể là
Cho hàm số \(f\left( x \right)=\frac{2x+1}{x-3}.\) Chọn mệnh đề sai trong các mệnh đề sau đây?
Cho đường cong \(\left( C \right)\) có phương trình \(y=\frac{x-1}{x+1}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là
Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y=\frac{\sqrt{x-1}+2021}{\sqrt{{{x}^{2}}-2mx+m+2}}\) có đúng ba đường tiệm cận.
Có bao nhiêu điểm \(M\) thuộc đồ thị hàm số \(y=\frac{x+2}{x-1}\) sao cho khoảng cách từ \(M\) đến trục tung bằng hai lần khoảng cách từ \(M\) đến trục hoành?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ:
Mệnh đề nào sau đây sai?
Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a,\) cạnh bên bằng \(4a\) và tạo với đáy một góc \({{30}^{0}}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng