Cho hàm số \(y = \left( {x - 1} \right){\left( {x + 2} \right)^2}\). Trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số nằm trên đường thẳng nào dưới đây?
A. \(2x + y + 4 = 0\)
B. \(2x + y - 4 = 0\)
C. \(2x - y - 4 = 0\)
D. \(2x - y + 4 = 0\)
Lời giải của giáo viên
Ta có \(y' = {\left( {x + 2} \right)^2} + 2\left( {x - 1} \right)\left( {x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = - 2\\
x + 2 + 2\left( {x - 1} \right) = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - 2 \Rightarrow y = 0\\
x = 0 \Rightarrow y = - 4
\end{array} \right.\)
Hai điểm cực trị của đồ thị hàm số là \(A\left( { - 2;0} \right),B\left( {0; - 4} \right) \Rightarrow \) trung điểm \(I\left( { - 1; - 2} \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) đồng biến trên R
Cho hàm số \(y = \frac{{{x^4}}}{4} + {x^3} - 4x + 1\). Nhận xét nào sau đây là sai:
Tìm m để giá trị nhỏ nhất của hàm số \(y = {x^3} + \left( {{m^2} + 1} \right)x + {m^2} - 2\) trên \(\left[ {0;2} \right]\) bằng 7
Cho hàm số \(y = \frac{{{x^2} + x + 2}}{{x - 2m - 1}}\) có đồ thị (1). Tìm \(m\) để đồ thị (1) có đường tiệm cận đứng trùng với đường thẳng \(x=3\)
Tìm m để hàm số \(y = {x^3} + 3{x^2} + 3mx - 1\) nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)
Tìm \(m\) để hàm số \(y = {x^3} - 3{m^2}x\) nghịch biến trên khoảng có độ dài bằng 2.
Phương trình tiếp tuyến với đồ thị \(y = {x^3} - 4{x^2} + 2\) tại điểm có hoành độ bằng 1 là:
Khoảng đồng biến của hàm số \(y = - {x^4} + 8{x^2} - 1\) là:
Tìm \(m\) để hàm số \(y = m{x^3} + 3{x^2} + 12x + 2\) đạt cực đại tại \(x=2\)
Tìm \(m\) để hàm số \(y = \frac{{x - m}}{{x + 1}}\) đồng biến trên từng khoảng xác định của chúng.
Điểm cực đại của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 2\) là:
Cho hàm số \(y = \frac{{3x + 2}}{{x + 2}}\) có đồ thị (C) có hai điểm phân biệt P, Q tổng khoảng cách từ P hoặc Q tới hai tiệm cận là nhỏ nhất. Khi đó \(P{Q^2}\) bằng:
Tìm m để hàm số \(y = \sin x - mx\) nghịch biến trên R
Biết \(M\left( {0;2} \right)\), \(N\left( {2; - 2} \right)\) là các điểm cực trị của đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\). Tính giá trị của hàm số tại \(x = - 2\).
Phương trình tiếp tuyến với đồ thị hàm số \(y = \frac{{x + 2}}{{x - 1}}\) tại giao điểm của nó với trục tung là: