Cho hàm số \(y = \sqrt {{x^2} - 6x + 5} \). Mệnh đề nào sau đây là đúng ?
A. Hàm số đồng biến trên khoảng \((5; + \infty )\)
B. Hàm số đồng biến trên khoảng \((3; + \infty )\)
C. Hàm số đồng biến trên khoảng \(( - \infty ;1)\)
D. Hàm số nghịch biến trên khoảng \(( - \infty ;3)\)
Lời giải của giáo viên
\(y = \sqrt {{x^2} - 6x + 5} \)
TX Đ: \(D = ( - \infty ,1] \cup {\rm{[}}5, + \infty )\)
\(\begin{array}{l}y' = \dfrac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }}\\y' = 0 \Leftrightarrow \dfrac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }} = 0 \Leftrightarrow x = 3\\\end{array}\)
\(y'\) không xác định tại \(x=1\) và \(x=5\)
Vậy hàm số đồng biến trên \(\left( {5, + \infty } \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\) ?
Cho \({\log _2}5 = a,\,{\log _3}5 = b\). Khi đó \({\log _6}5\) tính theo a và b là:
Trên đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
Tính nguyên hàm \(\int {x\sqrt {a - x} \,dx} \) ta được :
Cho số phức z = 3 + 4i. Giá trị của \(S = 2|z| - 1\) bằng bao nhiêu ?
Một khối cầu có diện tích đường tròn lớn là \(2\pi \) thì diện tích của khối cầu đó là
Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^{{{^{_\pi }} \over 2}}}\) tại điểm thuộc đồ thị có hoành độ bằng 1 là:
Trong mặt phẳng phức, tìm tập hợp điểm M biểu diễn số phức z thỏa mãn \(|z + 1 - i| \le 3\).
Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn cho số phức z thỏa mãn \({z^2}\) là một số ảo là :
Phương trình mặt cầu có tâm \(I\left( {3;\sqrt 3 ; - 7} \right)\) và tiếp xúc trục tung là:
Thể tích vật thể tròn xoay sinh ra bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi trục Ox và \(y = \sqrt {x\sin x} \,\,(0 \le x \le \pi )\) là:
Gọi x1, x2 là hai nghiệm của phương trình \({\log _2}^2x - 3{\log _2}x + 2 = 0\). Giá trị biểu thức \(P = {x_1}^2 + {x_2}^2\) bằng bao nhiêu ?
Cho số phức z thỏa mãn \(\overline z = \left( {1 - 3i} \right)\left( { - 2 + i} \right) = 2i\). Tính \(|z|\).